Efemerydy Zakryć Gwiazd Przez Księżyc

Total Page:16

File Type:pdf, Size:1020Kb

Efemerydy Zakryć Gwiazd Przez Księżyc Nr Data UT nazwa mag ZC/SAO typ AA Ak hk Fk h 1 I 1 3 6.3 1716 oc 331 167 36 -0.60 2 4 2 96 Virginis 6.5 2028 oc 260 126 11 -0.32 3 7 3 24 (Scorpii)/Ophiuchi 4.9 2399 oc 321 121 2 -0.09 4 7 4 6.7 2396 oc 243 124 4 -0.09 5 12 16 50 Capricorni 7.0 3189 zc 119 230 12 +0.08 6 12 16 lambda Ca pricorni 5.6 3188 zc 43 233 10 +0.08 7 13 17 7.7 146272 zc 30 237 15 +0.16 8 16 19 mu Piscium 4.8 219 zc 75 227 33 +0.47 9 17 18 6.9 110516 zc 149 204 43 +0.59 10 17 19 7.1 352 zc 13 218 45 +0.59 11 17 20 25 (Arietis)/Ceti 6.5 362 zc 88 231 36 +0.59 12 18 18 7.1 93387 zc 62 177 49 +0.69 13 19 22 70 Tauri 6.6 659 zc 141 253 34 +0.81 14 20 0 75 Tauri 5.0 667 zc 53 270 22 +0.81 15 20 0 theta 1 Tauri 3.8 669 zc 135 265 23 +0.81 16 20 0 6.7 672 zc 92 267 23 +0.81 17 20 0 theta 2 Tauri 3.4 671 zc 179 272 19 +0.81 18 20 0 theta 2 Tauri 3.4 671 oj 192 273 18 +0.81 19 20 1 4.8 677 zc 99 278 14 +0.81 20 20 1 6.5 680 zc 104 273 18 +0.81 21 20 23 111 Tauri 5.0 806 zc 121 248 39 +0.89 22 21 1 117 Tauri 5.8 820 zc 161 272 21 +0.89 23 21 18 124 H1. Orionis 5.9 944 zc 76 134 51 +0.94 24 21 22 6.3 970 zc 100 228 50 +0.95 25 21 23 6.8 975 zc 138 244 42 +0.95 26 22 19 6.5 1091 zc 127 129 43 +0.98 27 27 21 tau Leonis 5.0 1663 oc 263 110 20 -0.86 28 28 0 6.5 1676 oc 322 163 42 -0.85 29 30 4 Apami-Atsa = theta Vir. 4.4 1891 oc 334 202 33 -0.68 30 II 1 4 6.8 2097 oc 299 174 28 -0.49 31 10 17 6.8 3437 zc 132 258 4 +0.06 32 10 17 8.8 146655 zc 138 252 8 +0.06 33 11 18 7.9 109113 zc 46 256 12 +0.13 34 13 16 WZ Piscium 6.3 308 zc 157 202 44 +0.31 35 13 17 7.3 315 zc 57 219 41 +0.32 36 13 19 xi 1 Ceti 4.4 327 zc 136 253 24 +0.33 37 15 20 6.0 608 zc 126 243 38 +0.55 38 19 23 1 Cancri 5.8 1197 zc 83 230 44 +0.92 39 21 17 xi Leonis 5.0 1409 zc 84 101 23 +0.99 40 21 22 6.7 1423 zc 93 173 48 +0.99 41 24 21 6.2 1730 oc 316 124 24 -0.96 42 26 3 6.5 1850 oc 311 219 26 -0.90 43 29 4 6.8 2180 oc 265 200 22 -0.67 44 III 1 2 49 Librae 5.5 2291 oc 216 160 19 -0.58 45 11 17 7.4 110154 zc 116 261 16 +0.10 46 11 19 7.4 281 zc 81 274 6 +0.10 47 14 9 theta 2 Tauri 3.4 671 zc 63 81 13 +0.36 48 15 17 7.0 858 zc 99 188 57 +0.50 49 15 20 130 Tauri 5.5 878 zc 40 250 37 +0.51 208 Nr UT Gda Gru Kra Kro Łód Lub Ols Poz Szc War Wro Zie h m m m m m m m m m m m m 1 3 17.2 19.8 29.2 31.4 24.6 27.7 19.4 21.7 18.0 24.3 24.6 21.8 2 2 28.7 27.7 23.9 25.2 25.9 28.1 29.4 24.8 24.6 27.9 22.9 23.0 3 3 59.8 59.9 59.0 4 4 06.9 10.5 5 16 25.7 27.2 35.0 38.0 30.9 35.2 28.3 27.2 23.2 31.6 29.6 26.5 6 16 40.9 40.5 40.0 40.6 40.1 40.9 41.0 39.6 39.7 40.6 39.2 39.0 7 17 32.8 32.7 35.6 34.7 37.9 36.4 34.4 36.9 8 19 04.3 04.5 06.3 08.4 05.4 08.5 06.0 02.7 00.5 06.8 02.9 01.3 9 18 34.5 37.3 47.9 39.7 37.7 29.4 48.3 46.6 36.7 10 19 02.7 00.6 11 20 06.0 06.6 10.4 12.7 08.4 12.0 08.1 05.3 02.3 09.7 06.3 04.0 12 18 07.5 06.5 03.8 06.0 05.1 08.6 08.9 02.8 01.7 07.6 01.1 00.4 13 22 41.7 43.7 53.4 55.4 48.4 51.5 44.2 45.1 40.8 48.2 48.6 45.3 14 0 15.8 15.4 15.7 16.8 15.4 17.4 16.9 13.7 12.2 16.5 13.7 12.6 15 0 09.0 11.2 21.2 22.0 16.0 17.3 10.6 14.1 10.8 14.7 18.1 15.4 16 0 15.0 16.2 17.1 14.7 19.0 17.2 17 0 28.8 31.5 18 0 38.4 38.5 19 0 56.6 57.8 62.5 63.1 60.1 61.1 57.6 58.9 57.0 59.7 60.7 59.3 20 1 02.8 21 23 13.3 14.9 22.6 24.7 18.7 22.1 15.8 15.4 11.4 19.0 18.0 15.0 22 1 07.5 10.1 22.0 22.3 15.5 16.3 09.1 14.1 10.8 13.6 19.1 16.3 23 18 63.8 62.5 58.8 60.8 60.5 63.7 64.9 58.6 57.9 63.1 56.6 56.3 24 22 53.1 54.0 59.4 62.1 56.6 61.1 55.8 52.8 48.8 58.1 54.3 51.4 25 23 45.1 47.3 57.2 52.1 55.5 47.9 48.7 44.2 52.0 52.3 48.8 26 19 26.5 27 21 28.4 27.8 25.6 26.4 26.9 28.3 29.0 26.1 25.9 28.2 25.0 25.1 28 0 35.0 38.6 49.3 51.3 44.4 47.2 37.3 41.4 37.6 43.4 44.8 41.8 29 4 04.7 08.7 21.1 22.9 15.2 17.1 05.5 12.7 09.1 13.3 16.6 13.6 30 4 03.8 04.5 08.5 11.1 06.6 10.7 06.1 03.2 00.1 08.0 04.1 01.9 31 17 38.0 39.4 45.9 47.2 42.5 44.4 39.5 40.5 37.9 42.2 42.7 40.7 32 17 35.1 31.5 38.4 35.5 33 18 11.5 11.6 14.0 12.4 13.8 34 16 01.5 03.5 09.9 21.5 06.2 11.8 06.5 35 17 26.7 26.0 24.6 26.4 25.2 27.9 27.8 23.2 22.1 27.0 22.1 21.3 36 19 37.0 39.0 48.5 50.4 43.5 46.3 39.3 40.5 36.6 43.1 43.9 40.8 37 20 25.0 26.8 35.5 37.7 31.0 34.5 27.6 27.5 23.3 31.2 30.6 27.3 38 23 10.5 11.7 17.4 19.9 14.6 18.7 13.3 10.8 06.9 15.7 12.6 09.7 39 17 55.8 54.8 51.8 52.8 53.2 54.7 56.2 52.4 52.5 54.6 51.0 51.1 40 22 09.9 10.5 14.8 17.8 12.6 17.7 12.8 08.5 04.7 14.6 09.5 06.8 41 21 13.9 15.8 21.4 22.9 19.0 21.4 15.8 16.9 14.4 19.0 18.5 16.8 42 3 40.4 42.6 51.9 54.3 47.2 50.9 43.1 43.8 39.6 47.3 46.9 43.8 43 4 50.6 53.3 48.8 44.5 50.1 47.1 44 2 39.7 38.1 31.7 35.8 35.6 41.7 42.2 31.1 28.8 40.3 27.0 25.9 45 17 53.2 54.6 60.6 61.9 57.5 59.5 54.8 55.5 57.4 57.6 55.5 46 19 34.9 36.0 47 9 46.0 44.3 36.6 39.3 44.5 41.5 48 17 04.9 08.0 03.6 08.5 04.9 05.8 49 20 37.5 36.5 36.0 38.0 36.0 39.5 39.2 33.2 30.9 38.2 32.7 31.1 209 Nr Data UT nazwa mag ZC/SAO typ AA Ak hk Fk h 50 15 20 7.3 94872 zc 109 254 34 +0.51 51 16 19 26 Geminorum 5.2 1029 zc 47 219 50 +0.62 52 26 2 96 Virginis 6.5 2028 oc 214 201 25 -0.94 53 26 4 kappa Virginis 4.2 2033 oc 307 235 12 -0.94 54 28 2 eta Librae 5.4 2247 oc 266 181 24 -0.82 55 31 3 Y Sagittarii 5.8 2658 oc 337 173 21 -0.55 56 IV 6 7 Wenus -3.8 — zj 53 141 32 -0.02 57 6 8 Wenus -3.8 — oc 309 159 37 -0.02 58 10 16 Hyadum I = gamma Tauri 3.7 635 zc 128 236 44 +0.15 59 10 17 Hyadum I = gamma Tauri 3.7 635 oj 244 252 34 +0.15 60 10 18 70 Tauri 6.6 659 zc 88 270 21 +0.15 61 10 19 71 Tauri (V777) 4.5 661 zc 175 277 14 +0.16 62 10 19 71 Tauri (V777) 4.5 661 oj 190 273 18 +0.16 63 10 20 theta 1 Tauri 3.8 669 zc 93 283 10 +0.16 64 10 20 theta 2 Tauri 3.4 671 zc 113 284 9 +0.16 65 10 20 6.7 672 zc 47 287 7 +0.16 66 10 21 4.8 677 zc 42 294 1 +0.16 67 10 21 6.5 680 zc 53 291 4 +0.16 68 10 21 81 Tauri 5.5 678 zc 160 294 2 +0.16 69 10 21 85 Tauri 6.0 682 zc 123 292 3 +0.16 70 11 18 111 Tauri 5.0 806 zc 89 254 36 +0.24 71 11 18 7.6 94531 zc 130 258 33 +0.25 72 11 20 117 Tauri 5.8 820 zc 116 273 20 +0.25 73 11 21 167 H1.
Recommended publications
  • Modeling of PMS Ae/Fe Stars Using UV Spectra,
    A&A 456, 1045–1068 (2006) Astronomy DOI: 10.1051/0004-6361:20040269 & c ESO 2006 Astrophysics Modeling of PMS Ae/Fe stars using UV spectra, P. F. C. Blondel1,2 andH.R.E.TjinADjie1 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] 2 SARA, Kruislaan 415, 1098 SJ Amsterdam, The Netherlands Received 13 February 2004 / Accepted 13 October 2005 ABSTRACT Context. Spectral classification of PMS Ae/Fe stars, based on visual observations, may lead to ambiguous conclusions. Aims. We aim to reduce these ambiguities by using UV spectra for the classification of these stars, because the rise of the continuum in the UV is highly sensitive to the stellar spectral type of A/F-type stars. Methods. We analyse the low-resolution UV spectra in terms of a 3-component model, that consists of spectra of a central star, of an optically-thick accretion disc, and of a boundary-layer between the disc and star. The disc-component was calculated as a juxtaposition of Planck spectra, while the 2 other components were simulated by the low-resolution UV spectra of well-classified standard stars (taken from the IUE spectral atlases). The hot boundary-layer shows strong similarities to the spectra of late-B type supergiants (see Appendix A). Results. We modeled the low-resolution UV spectra of 37 PMS Ae/Fe stars. Each spectral match provides 8 model parameters: spectral type and luminosity-class of photosphere and boundary-layer, temperature and width of the boundary-layer, disc-inclination and circumstellar extinction.
    [Show full text]
  • Also Available in PDF
    University of Hawai‘i, Institute for Astronomy Publications in Calendar Year 2000 PUBLICATIONS Investigating the Link between Cometary and Interstellar Material. A&A, 353, 1101–1114 (2000) The following articles and books were published dur- ing calendar year 2000. The names of IfA authors Boehnhardt, H.; Hainaut, O.; Delahodde, C.; West, R.; are in boldface. For an html version of this list Meech, K.; Marsden, B. A Pencil-Beam Search for Dis- with links, go to http://www.ifa.hawaii.edu/publications/ tant TNOs at the ESO NTT. In Minor Bodies in the Outer 2000pubs.html. More recent publications are listed at Solar System, ed. A. Fitzsimmons, D. Jewitt, & R. M. http://www.ifa.hawaii.edu/publications/preprints/. West. ESO Astrophysics Symposia (Springer), 117–123 (2000) Barger, A. J.; Cowie, L. L.; Richards, E. A. Mapping the Evolution of High-Redshift Dusty Galaxies with Submil- Boesgaard, A. M. Review of Stellar Abundance Results from limeter Observations of a Radio-selected Sample. AJ, Large Telescopes. Proc. SPIE, 4005, 142–149 (2000) 119, 2092–2109 (2000) Boesgaard, A. M.; Stephens, A.; King, J. R.; Deliyannis, Barucci, M. A.; Romon, J.; Doressoundiram, A.; Tholen, C. P. Chemical Abundances in Globular Cluster Turn-Off D. J. Compositional Surface Diversity in the Trans-Nep- Stars from Keck/HIRES Observations. Proc. SPIE, 4005, tunian Objects. AJ, 120, 496–500 (2000) 274–284 (2000) Baudoz, P.; Mouillet, D.; Beuzit, J.-L.; Mekarnia, D.; Rab- Brandner, W.; Grebel, E. K.; Chu, Y.; Dottori, H.; Brandl, bia, Y.; Gay, J.; Schneider, J.-L. First Results of the B.; Richling, S.; Yorke, H.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • A Spectroscopy Study of Nearby Late-Type Stars, Possible Members of Stellar Kinematic Groups
    Astronomy & Astrophysics manuscript no. 14948 c ESO 2018 June 11, 2018 A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups ⋆ ⋆⋆ J. Maldonado1, R.M. Mart´ınez-Arn´aiz2 , C. Eiroa1, D. Montes2, and B. Montesinos3 1 Universidad Aut´onoma de Madrid, Dpto. F´ısica Te´orica, M´odulo 15, Facultad de Ciencias, Campus de Cantoblanco, E-28049 Madrid, Spain, 2 Universidad Complutense de Madrid, Dpto. Astrof´ısica, Facultad Ciencias F´ısicas, E-28040 Madrid, Spain 3 Laboratorio de Astrof´ısica Estelar y Exoplanetas, Centro de Astrobiolog´ıa, LAEX-CAB (CSIC-INTA), ESAC Campus, P.O. BOX 78, E-28691, Villanueva de la Ca˜nada, Madrid, Spain Received ; Accepted ABSTRACT Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ∼ 57000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • 2018 Astro Observing Events
    Prairie State Park June 11, 2017 References: https://skysafariastronomy.com/ http://astropixels.com/ephemeris/astrocal/astrocal2017cst.html http://www.seasky.org/astronomy/astronomy-calendar- 2017.html http://www.calsky.com/cs.cgi RASC Handbook 2018 All Photos by Mark Jones Unless noted M15 Sep 30, 2017 Ballwin MO Northern Limit Page and Lindbergh Sun Events 2018 Southern Limit Watson and Lindbergh Red Lines are 72,100 ft long Jan 3 1:00 - Perihelion (distance to sun: 147 mKm) Mar 20 10:15 - March Equinox Jun 21 4:07 - Northern Solstice (declination: +23.434°) Jul 6 11:00 - Aphelion (distance to sun: 152 mKm) Sep 22 19:54 – Sep Equinox Dec 21 17:23 - Southern Solstice (declination: -23.435°) Google Earth Full Moon Events 2018 Smallest Jun 27 – Second smallest of FM 2018 Jul 27 – Smallest of FM 2018 (29.41 arc-min) Largest Jan 1 – Largest FM of 2018 (33.16 arc-min) Jan 31 – Second largest FM of 2018 Canon DSLR FL=300mm Jan 1, 2018 - 3rd largest of the last 10 years. The biggest of the next 10 years. Former larger FM was Nov 14, 2016. Next larger FM is Nov 25, 2034 Other Moon Events 2018 Jan 2 - Northern most FM of 2018. Jun 27 – Southern most FM of 2018. Moon rise Sep 8, 2017 Arch from 17 miles away Other Moon Events 2018 Lunar “X” (local start times + ~2 hours) • Jan 23 23:42 Alt=1° • Mar 24 00:57 Alt=10° • May 23 01:02 Alt=17° • July 20 00:14 Alt=6° • Dec 14 17:24 Alt=41° Local STL times Favorable Dates in Yellow Lunar X - Mar 15, 2016 Data provided by Cloudy Nights https://www.cloudynights.com/topic/598806-2018-lunar-x-predictions/ Other Moon Events 2018 Golden Handle on the Moon Sun rises on the Jura mountains, while Sinus Iridium is still in shadow • Jan 26 – 19:00 Alt=64° • Mar 27 – 2:30 Alt=22° • Apr 25 – 15:36 Alt=2° • Jul 22 – 22:36 Alt=18° • Sep 19 – 18:48 Alt=21° • Nov 17 – 19:54 Alt=44° Start times.
    [Show full text]
  • UNSC Science and Technology Command
    UNSC Science and Technology Command Earth Survey Catalogue: Official Name/(Common) Star System Distance Coordinates Remarks/Status 18 Scorpii {TCP:p351} 18 Scorpii {Fact} 45.7 LY 16h 15m 37s Diameter: 1,654,100km (1.02R*) {Fact} -08° 22' 06" {Fact} Spectral Class: G2 Va {Fact} Surface Temp.: 5,800K {Fact} 18 Scorpii ?? (Falaknuma) 18 Scorpii {Fact} 45.7 LY 16h 15m 37s UNSC HQ base on world. UNSC {TCP:p351} {Fact} -08° 22' 06" recruitment center in the city of Halkia. {TCP:p355} Constellation: Scorpio 111 Tauri 111 Tauri {Fact} 47.8 LY 05h:24m:25.46s Diameter: 1,654,100km (1.19R*) {Fact} +17° 23' 00.72" {Fact} Spectral Class: F8 V {Fact} Surface Temp.: 6,200K {Fact} Constellation: Taurus 111 Tauri ?? (Victoria) 111 Tauri {Fact} 47.8 LY 05:24:25.4634 UNSC colony. {GoO:p31} {Fact} +17° 23' 00.72" Constellation: Taurus Location of a rebel cell at Camp New Hope in 2531. {GoO:p31} 51 Pegasi {Fact} 51 Pegasi {Fact} 50.1 LY 22h:57m:28s Diameter: 1,668,000km (1.2R*) {Fact} +20° 46' 7.8" {Fact} Spectral Class: G4 (yellow- orange) {Fact} Surface Temp.: Constellation: Pegasus 51 Pegasi-B (Bellerophon) 51 Pegasi 50.1 LY 22h:57m:28s Gas giant planet in the 51 Pegasi {Fact} +20° 46' 7.8" system informally named Bellerophon. Diameter: 196,000km. {Fact} Located on the edge of UNSC territory. {GoO:p15} Its moon, Pegasi Delta, contained a Covenant deuterium/tritium refinery destroyed by covert UNSC forces in 2545. {GoO:p13} Constellation: Pegasus 51 Pegasi-B-1 (Pegasi 51 Pegasi 50.1 LY 22h:57m:28s Moon of the gas giant planet 51 Delta) {GoO:p13} +20° 46' 7.8" Pegasi-B in the 51 Pegasi star Constellation: Pegasus system; a Covenant stronghold on the edge of UNSC territory.
    [Show full text]
  • Meteor Csillagászati Évkönyv
    Ár: 3000 Ft 2016 meteor csillagászati évkönyv csillagászati évkönyv meteor ISSN 0866- 2851 2016 9 770866 285002 meteor 2016 Távcsöves Találkozó Tarján, 2016. július 28–31. www.mcse.hu Magyar Csillagászati Egyesület Fotó: Sztankó Gerda, Tarján, 2012 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER meteor csillagászati évkönyv 2016 Szerkesztette: Benkõ József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2015 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Az évkönyv kalendárium részének összeállításában közremûködött: Bagó Balázs Kaposvári Zoltán Kiss Áron Keve Kovács József Molnár Péter Sánta Gábor Sárneczky Krisztián Szabadi Péter Szabó M. Gyula Szabó Sándor Szôllôsi Attila A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Szakmailag ellenôrizte: Szabados László A kiadvány a Magyar Tudományos Akadémia támogatásával készült. További támogatóink mindazok, akik az SZJA 1%-ával támogatják a Magyar Csillagászati Egyesületet. Adószámunk: 19009162-2-43 Felelôs kiadó: Mizser Attila Nyomdai elôkészítés: Kármán Stúdió, www.karman.hu Nyomtatás, kötészet: OOK-Press Kft., www.ookpress.hu Felelôs vezetô: Szathmáry Attila Terjedelem: 23 ív fekete-fehér + 12 oldal színes melléklet 2015. november ISSN 0866-2851 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Tartalom Bevezetô ................................................... 7 Kalendárium ..............................................
    [Show full text]
  • Lecture 26 Pre-Main Sequence Evolution
    Lecture 26 Low-Mass Young Stellar Objects 1. Nearby Star Formation 2. General Properties of Young Stars 3. T Tauri Stars 4. Herbig Ae/Be Stars References Adams, Lizano & Shu ARAA 25 231987 Lada OSPS 1999 Stahler & Palla Chs. 17 & 18 Local Star Forming Regions Much of our knowledge of star formation comes from a few nearby regions Taurus-Auriga & Perseus – 150 pc low mass (sun-like) stars Orion – 450 pc high & low mass stars [Grey – Milky Way Black – Molecular clouds] Representative for the Galaxy as a whole? Stahler & Palla Fig 1.1 PERSEUS with famous objects AURIGA NGC 1579 B5 IC 348 NGC 1333 TMC-1 T Tau L1551 TAURUS Taurus, Auriga & Perseus • A cloud complex rich in cores & YSOs • NGC1333/IC 348 • Pleiades •TMC-1,2 • T Tauri & other TTSs • L 1551 Ophiuchus Wilking et al. 1987 AJ 94 106 CO Andre PP IV Orion L1630 L1630 star clusters L1630 in Orion NIR star clusters on CS(2-1) map E Lada, ApJ 393 25 1992 4 M(L1630) ~ 8x10 Msun 5 massive cores (~ 200 Msun) associated with NIR star clusters 2. General Properties Young stars are associated with molecular clouds. Observations are affected by extinction, which decreases with increasing wavelength. Loosely speaking, we can distinguish two types: Embedded stars - seen only at NIR or longer wavelengths, usually presumed to be very young Revealed stars - seen at optical wavelengths or shorter, usually presumed to be older What makes young stars particularly interesting is Circumstellar gas and dust – both flowing in as well as out, e.g., jets, winds, & disks.
    [Show full text]
  • Star Dust Newsletter of National Capital Astronomers, Inc
    Star Dust Newsletter of National Capital Astronomers, Inc. capitalastronomers.org January 2016 Volume 74, Issue 5 Next Meeting William & Caroline Herschel When: Sat. Jan 9th, 2016 Time: 7:30 pm and the Community of Where: UMD Observatory Science Enthusiasts Speakers: Dean Howarth & Jennifer Horowitz Dean Howarth, Natural Philosopher & Educator and Jennifer Horowitz, Student – College of William & Mary Table of Contents Abstract: William Herschel moved from Hannover, Germany to Bath, Preview of Jan 2016 Talk 1 England, to work as a musician and composer. He was quite successful Sky Watchers 3 in Bath and persuaded his sister, Caroline, to join him, both as a Asteroid Thyra 4 companion and musical collaborator. William became an avid amateur astronomer in his spare time as did Caroline, who eventually became an Another NCA Member Benefit 4 enthusiastic and very skilled observer as well. She participated in Occultations 5 William's important discoveries, and then made many of her own. The Calendar 7 Herschels’ discovery of Uranus ended the fruitless attempts by Kepler and others to associate the six previously known planets with the five Directions to Dinner/Meeting regular polyhedra. Our time and location for dinner with the speaker before this meeting is 5:30 pm at William was the first to “The Common,” the restaurant in the map out the uneven UMD University College building located distribution of stars on the at 3501 University Blvd. celestial sphere. The The meeting is held at the UMD individual stars that we can Astronomy Observatory on Metzerott Rd see through an optical about halfway between Adelphi Rd and University Blvd.
    [Show full text]
  • Prime Focus Hyades Cluster Starting at ~10:15 Pm EDT
    Highlights of the April Sky. - - - 3rdrd - - - PM: A Waxing Crescent Moon passes through the Prime Focus Hyades cluster starting at ~10:15 pm EDT. A Publication of the Kalamazoo Astronomical Society - - - 6thth - - - November 2013 PM: Moon is near Jupiter. April 2014 - - - 7thth - - - First Quarter Moon 4:31 am EDT This Months KAS Events This Months Events - - - 8thth - - - Mars is at opposition. General Meeting: Friday, April 4 @ 7:00 pm - - - 10thth - - - PM: The Moon is below Kalamazoo Area Math & Science Center - See Page 8 for Details Regulus - - - 12thth - - - Observing Session: Saturday, April 5 @ 8:00 pm DAWN: Neptune is 0.7º south of Venus. Moon, Mars & Jupiter - Kalamazoo Nature Center - - - 14thth - - - PM: Mars is closest to Observing Event: Tuesday, April 15 @ 12:30 am Earth for 2014. Total Lunar Eclipse - Kalamazoo Nature Center - - - 15thth - - - Total Lunar Eclipse begins at 1:58 am EDT Observing Session: Saturday, April 26 @ 8:00 pm Full Moon Galaxies of the Virgo Cluster - Kalamazoo Nature Center 3:42 am EDT - - - 17thth - - - DAWN: Saturn is very close to the Moon. InsideInside thethe Newsletter.Newsletter. .. .. - - - 22nd - - - AM: Lyrid meteor shower March Meeting Minutes......................... p. 2 peaks. Last Quarter Moon Board Meeting Minutes......................... p. 3 3:52 am EDT Observations........................................... p. 3 - - - 25thth - - - DAWN: A Waning Crescent NASA Space Place.................................. p. 4 Moon is to the upper right of Venus. Membership of the KAS........................p. 5 - - - 26thth - - - April Night Sky........................................ p. 6 DAWN: A Waning Crescent Moon is to the lower left of KAS Board & Announcements............ p. 7 Venus. General Meeting Preview..................... p. 8 - - - 29thth - - - New Moon 2:14 am EDT www.kasonline.org MarchMarch MeetingMeeting MinutesMinutes The general meeting of the Kalamazoo Astronomical Society in the sky during the winter and lowest in the sky during the was brought to order by President Richard Bell on Friday, summer.
    [Show full text]
  • Download This Article in PDF Format
    A&A 397, 693–710 (2003) Astronomy DOI: 10.1051/0004-6361:20021545 & c ESO 2003 Astrophysics Near-IR echelle spectroscopy of Class I protostars: Mapping Forbidden Emission-Line (FEL) regions in [FeII] C. J. Davis1,E.Whelan2,T.P.Ray2, and A. Chrysostomou3 1 Joint Astronomy Centre, 660 North A’oh¯ok¯u Place, University Park, Hilo, Hawaii 96720, USA 2 Dublin Institute for Advanced Studies, School of Cosmic Physics, 5 Merrion Square, Dublin 2, Ireland 3 Department of Physical Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK Received 27 August 2002 / Accepted 22 October 2002 Abstract. Near-IR echelle spectra in [FeII] 1.644 µm emission trace Forbidden Emission Line (FEL) regions towards seven Class I HH energy sources (SVS 13, B5-IRS1, IRAS 04239+2436, L1551-IRS5, HH 34-IRS, HH 72-IRS and HH 379-IRS) and three classical T Tauri stars (AS 353A, DG Tau and RW Aur). The parameters of these FEL regions are compared to the characteristics of the Molecular Hydrogen Emission Line (MHEL) regions recently discovered towards the same outflow sources (Davis et al. 2001 – Paper I). The [FeII] and H2 lines both trace emission from the base of a large-scale collimated outflow, although they clearly trace different flow components. We find that the [FeII] is associated with higher-velocity gas than the H2, and that the [FeII] emission peaks further away from the embedded source in each system. This is probably because the [FeII] is more closely associated with HH-type shocks in the inner, on-axis jet regions, while the H2 may be excited along the boundary between the jet and the near-stationary, dense ambient medium that envelopes the protostar.
    [Show full text]