Efemerydy Zakryć Gwiazd Przez Księżyc

Total Page:16

File Type:pdf, Size:1020Kb

Efemerydy Zakryć Gwiazd Przez Księżyc Nr Data UT nazwa mag ZC /SAO typ AA Ak hk Fk h 1 I 1 17 6.9 3149 zc 29 234 7 +0.11 2 1 17 6.6 3152 zc 109 237 5 +0.11 3 2 17 7.8 3282 zc 91 233 13 +0.18 4 4 15 29 Piscium 5.1 3535 zc 79 177 36 +0.37 5 4 15 6.9 3537 zc 32 185 36 +0.37 6 4 19 4 (Ceti)/Piscium 6.4 12 zc 138 239 19 +0.38 7 4 19 5 (Ceti)/Piscium 6.2 13 zc 124 242 19 +0.38 8 4 19 7.1 15 zc 81 244 18 +0.38 9 5 17 7.0 128 zc 99 202 40 +0.49 10 7 16 mu Ceti 4.3 405 zc 96 137 43 +0.71 11 9 14 sigma 2 Tauri 4.7 704 zc 153 88 19 +0.89 12 9 23 5.5 741 zc 60 246 40 +0.91 13 10 17 130 Tauri 5.5 878 zc 146 105 32 +0.96 14 13 4 6.0 1238 oc 320 274 18 -0.99 15 18 4 7.1 1802 oc 255 195 38 -0.67 16 20 3 94 Virginis 6.5 2020 oc 255 152 28 -0.48 17 22 4 6.3 2245 oc 320 160 23 -0.29 18 30 16 8.3 3372 zc 99 239 14 +0.08 19 II 1 17 7.7 109441 zc 116 235 23 +0.23 20 2 19 nu Piscium 4.5 249 zc 77 250 23 +0.34 21 3 15 7.0 110566 zc 82 171 48 +0.44 22 3 23 mu Ceti 4.3 405 zc 86 284 2 +0.47 23 4 16 6.3 498 zc 106 169 53 +0.56 24 4 18 5 Tauri 4.1 508 zc 126 218 48 +0.57 25 4 19 5 Tauri 4.1 508 oj 205 232 43 +0.57 26 5 13 Hyadum I = gamma Tauri 3.7 635 zc 17 105 32 +0.66 27 5 16 70 Tauri 6.6 659 zc 41 152 54 +0.67 28 5 17 71 Tauri (V777) 4.5 661 zc 123 159 55 +0.67 29 5 18 theta 1 Tauri 3.8 669 zc 74 188 56 +0.68 30 5 18 theta 2 Tauri 3.4 671 zc 86 183 54 +0.68 31 5 18 6.7 672 zc 34 201 55 +0.68 32 5 19 theta 2 Tauri 3.4 671 oj 244 218 51 +0.68 33 5 19 theta 1 Tauri 3.8 669 oj 270 212 51 +0.68 34 5 19 4.8 677 zc 44 218 52 +0.68 35 5 19 6.5 680 zc 40 211 49 +0.68 36 5 19 81 Tauri 5.5 678 zc 158 213 48 +0.68 37 5 20 85 Tauri 6.0 682 zc 136 231 47 +0.68 38 5 21 6.6 685 zc 39 247 39 +0.69 39 5 23 89 Tauri 5.8 699 zc 126 268 23 +0.69 40 6 16 111 Tauri 5.0 806 zc 119 119 42 +0.77 41 6 18 115 Tauri 5.4 814 zc 11 157 57 +0.78 42 8 23 74 Geminorum 5.0 1158 zc 36 235 45 +0.95 43 12 3 TX Leonis = 49 Leonis 5.6 1550 oc 332 251 25 -0.99 44 15 0 6.7 1864 oc 352 150 31 -0.83 45 15 2 46 Virginis 6.2 1869 oc 297 184 35 -0.83 46 15 4 48 Virginis 6.7 1875 oc 315 221 27 -0.82 47 16 4 6.9 1985 oc 245 205 28 -0.74 48 20 2 6.6 2441 oc 279 134 8 -0.38 49 21 3 6.8 2571 oc 244 136 8 -0.28 208 Nr UT Gda Gru Kra Kro Łód Lub Ols Poz Szc War Wro Zie h m m m m m m m m m m m m 1 17 10.8 10.7 11.1 11.8 10.8 11.8 11.1 10.2 09.8 11.2 10.1 09.7 2 17 27.7 29.7 40.2 43.4 34.7 30.6 30.5 26.0 35.0 33.9 30.2 3 17 24.7 25.9 31.4 33.7 28.6 32.2 27.0 25.4 22.2 29.5 27.1 24.5 4 15 19.7 19.3 19.0 21.9 19.2 23.7 21.8 16.0 13.7 21.7 15.2 13.7 5 15 53.0 51.6 47.2 48.6 49.4 51.5 53.3 48.4 48.7 51.5 46.2 46.5 6 18 60.4 62.9 80.0 69.3 76.8 64.2 63.5 57.5 69.8 68.1 62.8 7 19 13.5 15.3 25.1 28.3 19.9 24.6 16.5 15.6 11.0 20.4 18.7 15.0 8 19 33.3 34.1 38.3 40.0 36.1 38.7 35.0 33.7 31.2 36.7 34.9 33.1 9 17 29.2 29.7 33.1 36.5 31.3 36.6 32.0 27.2 23.6 33.5 27.7 25.1 10 16 08.5 07.6 05.6 07.8 06.6 10.2 09.9 04.3 03.2 09.0 03.0 02.2 11 14 36.7 33.8 12 23 16.6 16.5 17.7 19.8 17.1 20.4 18.4 14.3 11.9 18.7 14.3 12.6 13 17 17.1 18.1 20.4 17.0 12.7 15.4 14 4 28.9 30.9 38.6 39.1 34.8 35.5 30.0 33.6 31.4 33.6 36.6 34.8 15 3 58.2 58.5 60.6 64.4 59.7 65.8 61.5 54.8 50.6 62.7 54.6 51.8 16 2 64.4 63.5 60.6 63.5 62.3 67.1 66.5 58.9 56.9 65.6 56.9 55.8 17 4 50.9 51.4 54.1 56.2 52.8 56.1 52.7 50.2 48.0 54.1 50.7 49.1 18 16 36.7 38.9 37.0 31.8 34.3 19 17 57.7 60.2 61.4 61.3 55.3 60.8 20 19 17.8 18.5 22.2 23.8 20.3 22.8 19.5 18.0 15.6 20.9 19.0 17.2 21 15 40.5 22 23 30.9 23 16 28.2 28.1 29.6 33.0 28.8 33.9 30.7 25.0 22.2 31.3 24.8 22.7 24 18 30.5 31.8 40.0 44.0 35.5 41.5 34.0 30.5 25.7 37.1 32.7 29.0 25 19 31.7 31.3 28.7 30.0 30.5 33.2 33.3 28.4 26.8 32.6 27.0 26.4 26 13 59.8 58.2 67.0 63.3 68.0 66.0 27 16 58.3 55.7 47.5 48.5 51.3 52.9 57.7 51.1 53.0 53.8 47.5 48.8 28 16 58.6 58.8 61.8 65.5 60.1 65.7 61.3 55.9 52.7 62.5 56.2 53.7 29 18 15.8 15.2 14.3 16.9 14.7 18.8 17.6 11.8 09.8 17.2 10.8 09.4 30 18 14.0 13.9 15.4 18.5 14.6 19.3 16.3 10.9 08.1 16.9 10.8 08.8 31 18 58.9 54.4 45.2 46.8 49.0 51.2 57.2 48.3 50.6 52.1 44.3 45.2 32 19 26.5 26.9 28.5 31.0 28.0 32.2 29.0 24.5 21.4 30.1 24.5 22.6 33 19 24.2 25.0 28.9 31.7 27.3 31.9 27.1 23.3 19.4 29.1 24.2 21.5 34 19 37.9 36.0 31.8 33.9 33.7 36.8 38.6 31.5 31.0 36.3 29.4 29.0 35 19 35.5 34.7 33.4 35.8 34.0 37.7 37.1 31.2 29.5 36.3 30.1 28.9 36 19 40.7 37 19 60.5 62.4 72.7 76.2 67.1 72.3 63.9 62.3 57.1 67.9 65.7 61.5 38 21 17.2 15.1 11.8 13.6 13.0 15.9 17.8 10.9 10.0 15.4 09.3 08.5 39 23 04.6 06.5 15.4 16.3 10.8 12.4 06.2 08.9 05.7 09.8 12.3 09.8 40 16 08.5 08.1 08.7 11.5 08.2 12.4 10.2 05.4 03.6 10.3 05.0 03.6 41 18 02.2 00.1 42 23 38.2 33.6 36.5 35.0 40.3 31.1 28.7 39.3 29.3 27.7 43 3 43.5 45.7 54.4 55.6 50.0 51.9 45.3 48.0 44.9 49.2 51.2 48.8 44 0 11.8 14.7 23.2 24.9 19.3 21.3 13.5 17.1 14.2 18.4 19.8 17.6 45 2 12.7 13.5 17.8 20.8 15.8 20.6 15.5 11.7 08.0 17.6 12.7 10.0 46 4 22.6 24.3 32.0 34.5 28.2 32.2 25.4 24.5 20.4 28.8 26.9 23.9 47 4 31.5 25.5 22.4 48 2 28.9 28.0 24.8 26.2 26.4 28.8 29.7 25.1 28.4 23.4 23.3 49 3 24.9 23.4 17.9 19.8 20.9 24.0 26.0 19.0 23.8 16.3 16.3 209 Nr Data UT nazwa mag ZC /SAO typ AA Ak hk Fk h 50 II 22 4 6.3 2724 oc 280 145 12 -0.20 51 28 17 7.8 61 zc 21 261 7 +0.05 52 III 2 17 6.8 110464 zc 107 240 32 +0.20 53 2 19 7.6 110502 zc 96 266 14 +0.21 54 3 20 7.3 93398 zc 107 266 19 +0.31 55 3 21 6.0 491 zc 82 283 6 +0.32 56 4 19 48 Tauri 6.3 626 zc 74 240 40 +0.42 57 4 21 Hyadum I = gamma Tauri 3.7 635 zc 53 266 23 +0.42 58 4 21 Hyadum I = gamma Tauri 3.7 635 oj 295 276 15 +0.43 59 4 23 71 Tauri (V777) 4.5 661 zc 90 293 2 +0.44 60 5 23 111 Tauri 5.0 806 zc 105 284 11 +0.55 61 6 17 6.4 934 zc 121 161 55 +0.64 62 6 19 6.6 951 zc 88 220 51 +0.65 63 8 19 6.0 1238 zc 106 173 55 +0.84 64 8 23 7.0 1247 zc 117 244 39 +0.85 65 9 0 6.7 1258 zc 61 265 24 +0.86 66 14 21 65 Virginis 5.9 1921 oc 355 124 18 -0.94 67 14 22 66 Virginis 5.8 1924 oc 328 142 26 -0.94 68 15 3 74 Virginis 4.7 1941 oc 270 231 19 -0.94 69 19 2 24 (Scorpii)/Ophiuchi 4.9 2399 oc 292 160 18 -0.64 70 30 11 mu Ceti 4.3 405 zc 73 144 43 +0.08 71 IV 1 18 7.3 94220 zc 150 246 38 +0.27 72 1 18 5.5 741 zc 50 248 37 +0.27 73 5 17 54 Cancri 6.4 1323 zc 51 152 51 +0.71 74 6 18 18 Leo nis 5.7 1439 zc 179 160 47 +0.81 75 6 20 21 Leonis 6.9 1448 zc 79 207 47 +0.81 76 14 1 gamma Librae 3.9 2223 oc 321 190 23 -0.93 77 28 10 Hyadum I = gamma Tauri 3.7 635 zc 88 135 46 +0.06 78 28 11 Hyadum I = gamma Tauri 3.7 635 oj 242 158 52 +0.06 79 28 15 theta 1 Tauri 3.8 669 zc 121 232 44 +0.07 80 28 15 theta 2 Tauri 3.4 671 zc 159 238 41 +0.07 81 28 15 theta 2 Tauri 3.4 671 oj 185 242 39 +0.07 82 28 18 Aldebaran = alpha Tauri 0.9 692 zc 49 275 17 +0.07 83 28 19 Aldebaran = alpha Tauri 0.9 692 oj 301 283 11 +0.08 84 30 19 7.5 96047 zc 47 271 23 +0.25 85 30 21 7.3 96110 zc 104 285 11 +0.25 86 30 21 6.4 1040 zc 133 287 10 +0.26 87 V 1 17 74 Geminorum 5.0 1158 zc 127 231 49 +0.35 88 3 19 6.8 1413 zc 166 219 45 +0.57 89 3 20 6.7 1422 zc 80 242 35 +0.58 90 4 23 TX Leonis = 49 Leonis 5.6 1550 zc 111 264 16 +0.69 91 8 0 46 Virginis 6.2 1869 zc 75 239 18 +0.92 92 24 8 mu Ceti 4.3 405 oc 237 170 48 -0.04 93 28 20 6.8 1114 zc 66 288 9 +0.13 94 28 21 6.9 1124 zc 73 294 5 +0.13 95 VI 3 19 Porrima = gamma Virginis 2.8 1821 zc 90 193 36 +0.72 96 3 19 3.5 54027 zc 89 193 36 +0.72 97 3 20 Porrima = gamma Virginis 2.8 1821 oj 323 214 32 +0.73 98 3 20 3.5 54027 oj 323 214 32 +0.73 210 Nr UT Gda Gru Kra Kro Łód Lub Ols Poz Szc War Wro Zie h m m m m m m m m m m m m 50 4 54.6 53.9 51.8 53.8 53.0 50.8 49.5 49.4 48.8 51 17 56.7 55.2 52.3 52.4 53.4 53.3 55.7 53.7 54.7 53.9 52.5 53.0 52 17 25.0 26.6 34.7 37.3 30.4 34.4 27.8 26.7 22.5 31.0 29.2 26.0 53 19 31.1 32.4 38.4 39.3 35.3 36.8 32.5 33.6 31.2 34.9 35.8 33.9 54 20 09.5 11.1 18.3 19.3 14.6 16.3 11.1 12.6 09.8 14.1 15.2 13.0 55 21 43.9 44.9 48.8 49.0 46.8 47.1 44.5 46.3 45.0 46.2 47.9 46.9 56 18 58.6 59.2 62.7 64.9 60.9 64.4 60.7 57.8 54.8 62.2 58.7 56.6 57 20 60.8 61.1 63.3 64.4 62.2 64.0 62.0 60.4 58.6 62.8 61.1 59.8 58 21 46.6 48.6 55.6 56.1 52.2 53.0 47.8 51.0 48.7 51.2 53.6 51.9 59 23 34.9 35.9 37.8 37.2 38.8 60 23 23.6 24.9 30.4 30.6 27.6 27.9 24.3 26.9 25.4 26.6 29.2 27.9 61 17 08.8 09.3 14.1 17.8 11.5 17.0 11.7 07.2 03.3 13.5 08.2 05.3 62 19 37.2 37.7 41.8 44.6 39.7 44.2 39.8 35.9 32.2 41.4 36.9 34.2 63 19 29.9 30.2 33.4 36.4 31.8 36.6 32.6 27.8 24.4 33.8 28.4 25.9 64 22 55.9 57.5 64.8 66.7 61.2 64.3 58.2 58.1 54.4 61.4 60.6 57.9 65 0 39.2 40.0 43.8 42.0 41.0 39.6 37.0 40.9 39.0 66 21 11.3 12.3 07.8 09.1 06.4 09.1 07.4 67 22 13.6 14.2 16.9 18.6 15.7 18.3 15.1 13.6 11.6 16.5 14.2 12.8 68 3 41.4 42.8 48.9 51.4 45.9 50.0 44.1 42.2 38.1 46.9 44.1 41.2 69 2 09.4 09.2 09.4 12.0 09.4 13.6 11.5 06.3 04.1 11.7 05.8 04.3 70 10 65.2 64.2 61.2 63.1 62.8 65.7 66.4 60.8 60.1 65.0 59.2 58.8 71 18 00.0 08.4 12.3 00.1 03.9 06.7 12.8 72 18 12.6 12.5 13.9 15.8 13.2 16.3 14.3 10.5 08.1 14.7 10.6 08.9 73 17 14.2 74 18 26.3 31.9 29.9 75 20 35.3 35.7 38.7 41.9 37.2 42.6 38.5 32.8 28.9 39.6 33.3 30.6 76 1 15.4 16.5 22.0 25.0 19.3 24.1 18.3 15.3 11.5 20.8 16.8 14.0 77 10 28.1 27.2 25.1 27.1 26.1 29.4 29.3 24.0 23.1 28.4 22.6 22.0 78 11 35.2 34.4 31.3 33.0 33.2 36.1 36.7 31.0 29.7 35.6 29.4 28.8 79 14 57.0 58.7 68.2 71.1 63.1 67.7 60.0 58.8 54.0 63.7 61.9 58.1 80 15 09.5 13.5 13.6 18.3 09.5 22.8 81 15 33.4 38.0 82 18 20.9 21.2 23.1 23.9 22.1 23.4 21.8 20.8 19.4 22.5 21.5 20.4 83 19 00.6 02.5 09.2 09.3 05.9 06.0 01.4 05.2 03.5 04.6 07.8 06.5 84 19 54.7 54.9 56.9 58.2 55.9 58.1 56.2 53.9 51.8 56.8 54.5 53.1 85 21 10.7 12.0 17.1 17.2 14.5 14.7 11.3 13.9 12.5 13.6 16.0 14.8 86 21 17.7 19.3 25.7 25.6 22.5 22.2 18.2 22.2 20.8 21.0 24.8 23.6 87 17 44.4 42.1 88 19 10.1 12.7 25.0 26.5 18.5 21.3 12.7 15.5 11.2 17.5 20.5 17.0 89 20 41.2 42.2 47.3 49.7 44.8 48.7
Recommended publications
  • Modeling of PMS Ae/Fe Stars Using UV Spectra,
    A&A 456, 1045–1068 (2006) Astronomy DOI: 10.1051/0004-6361:20040269 & c ESO 2006 Astrophysics Modeling of PMS Ae/Fe stars using UV spectra, P. F. C. Blondel1,2 andH.R.E.TjinADjie1 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] 2 SARA, Kruislaan 415, 1098 SJ Amsterdam, The Netherlands Received 13 February 2004 / Accepted 13 October 2005 ABSTRACT Context. Spectral classification of PMS Ae/Fe stars, based on visual observations, may lead to ambiguous conclusions. Aims. We aim to reduce these ambiguities by using UV spectra for the classification of these stars, because the rise of the continuum in the UV is highly sensitive to the stellar spectral type of A/F-type stars. Methods. We analyse the low-resolution UV spectra in terms of a 3-component model, that consists of spectra of a central star, of an optically-thick accretion disc, and of a boundary-layer between the disc and star. The disc-component was calculated as a juxtaposition of Planck spectra, while the 2 other components were simulated by the low-resolution UV spectra of well-classified standard stars (taken from the IUE spectral atlases). The hot boundary-layer shows strong similarities to the spectra of late-B type supergiants (see Appendix A). Results. We modeled the low-resolution UV spectra of 37 PMS Ae/Fe stars. Each spectral match provides 8 model parameters: spectral type and luminosity-class of photosphere and boundary-layer, temperature and width of the boundary-layer, disc-inclination and circumstellar extinction.
    [Show full text]
  • Dynamical Evolution and Stability Maps of the Proxima Centauri System 3
    A MNRAS 000, 1–11 (2012) Preprint 24 September 2018 Compiled using MNRAS L TEX style file v3.0 Dynamical evolution and stability maps of the Proxima Centauri system Tong Meng1,2, Jianghui Ji1⋆, Yao Dong1 1CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 2University of Chinese Academy of Sciences, Beijing 100049, China Received 2012 July 26; in original form 2011 October 30 ABSTRACT Proxima Centauri was recently discovered to host an Earth-mass planet of Proxima b, and a 215-day signal which is probably a potential planet c. In this work, we investigate the dynamical evolution of the Proxima Centauri system with the full equations of motion and semi-analytical models including relativistic and tidal effects. We adopt the modified Lagrange-Laplace secular equations to study the evolution of eccentricity of Proxima b, and find that the outcomes are consistent with those from the numerical simulations. The simulations show that relativistic effects have an influence on the evolution of eccentricities of planetary orbits, whereas tidal effects primarily affects the eccentricity of Proxima b over long timescale. Moreover, using the MEGNO (the Mean Exponential Growth factor of Nearby Orbits) technique, we place dynamical constraints on orbital parameters that result in stable or quasi-periodic motions for coplanar and non-coplanar configurations. In the coplanar case, we find that the orbit of Proxima b is stable for the semi-major axis ranging from 0.02 au to 0.1 au and the eccentricity being less than 0.4. This is where the best-fitting parameters for Proxima b exactly fall.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Also Available in PDF
    University of Hawai‘i, Institute for Astronomy Publications in Calendar Year 2000 PUBLICATIONS Investigating the Link between Cometary and Interstellar Material. A&A, 353, 1101–1114 (2000) The following articles and books were published dur- ing calendar year 2000. The names of IfA authors Boehnhardt, H.; Hainaut, O.; Delahodde, C.; West, R.; are in boldface. For an html version of this list Meech, K.; Marsden, B. A Pencil-Beam Search for Dis- with links, go to http://www.ifa.hawaii.edu/publications/ tant TNOs at the ESO NTT. In Minor Bodies in the Outer 2000pubs.html. More recent publications are listed at Solar System, ed. A. Fitzsimmons, D. Jewitt, & R. M. http://www.ifa.hawaii.edu/publications/preprints/. West. ESO Astrophysics Symposia (Springer), 117–123 (2000) Barger, A. J.; Cowie, L. L.; Richards, E. A. Mapping the Evolution of High-Redshift Dusty Galaxies with Submil- Boesgaard, A. M. Review of Stellar Abundance Results from limeter Observations of a Radio-selected Sample. AJ, Large Telescopes. Proc. SPIE, 4005, 142–149 (2000) 119, 2092–2109 (2000) Boesgaard, A. M.; Stephens, A.; King, J. R.; Deliyannis, Barucci, M. A.; Romon, J.; Doressoundiram, A.; Tholen, C. P. Chemical Abundances in Globular Cluster Turn-Off D. J. Compositional Surface Diversity in the Trans-Nep- Stars from Keck/HIRES Observations. Proc. SPIE, 4005, tunian Objects. AJ, 120, 496–500 (2000) 274–284 (2000) Baudoz, P.; Mouillet, D.; Beuzit, J.-L.; Mekarnia, D.; Rab- Brandner, W.; Grebel, E. K.; Chu, Y.; Dottori, H.; Brandl, bia, Y.; Gay, J.; Schneider, J.-L. First Results of the B.; Richling, S.; Yorke, H.
    [Show full text]
  • Arxiv:1608.03799V1 [Astro-Ph.SR] 12 Aug 2016 Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35
    Draft version November 15, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 FORMATION OF THE UNEQUAL-MASS BINARY PROTOSTARS IN L1551 NE BY ROTATIONALLY-DRIVEN FRAGMENTATION Jeremy Lim Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong & Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Tomoyuki Hanawa Center for Frontier Science, Chiba University, Inage-ku, Chiba 263-8522, Japan Paul K. H. Yeung Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong Shigehisa Takakuwa arXiv:1608.03799v1 [astro-ph.SR] 12 Aug 2016 Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan Tomoaki Matsumoto Faculty of Humanity and Environment, Hosei University, Chiyoda-ku, Tokyo 102-8160, Japan 2 Kazuya Saigo Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan ABSTRACT We present observations at 7 mm that fully resolve the two circumstellar disks, and a reanalyses of archival observations at 3.5 cm that resolve along their major axes the two ionized jets, of the class I binary protostellar system L1551 NE. We show that the two circumstellar disks are better fit by a shallow inner and steep outer power-law than a truncated power-law. The two disks have very different transition radii between their inner and outer regions of ∼18.6 AU and ∼8.9 AU respectively. Assuming that they are intrinsically circular and geometrically thin, we find that the two circumstellar disks are parallel with each other and orthogonal in projection to their respective ionized jets.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • A Spectroscopy Study of Nearby Late-Type Stars, Possible Members of Stellar Kinematic Groups
    Astronomy & Astrophysics manuscript no. 14948 c ESO 2018 June 11, 2018 A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups ⋆ ⋆⋆ J. Maldonado1, R.M. Mart´ınez-Arn´aiz2 , C. Eiroa1, D. Montes2, and B. Montesinos3 1 Universidad Aut´onoma de Madrid, Dpto. F´ısica Te´orica, M´odulo 15, Facultad de Ciencias, Campus de Cantoblanco, E-28049 Madrid, Spain, 2 Universidad Complutense de Madrid, Dpto. Astrof´ısica, Facultad Ciencias F´ısicas, E-28040 Madrid, Spain 3 Laboratorio de Astrof´ısica Estelar y Exoplanetas, Centro de Astrobiolog´ıa, LAEX-CAB (CSIC-INTA), ESAC Campus, P.O. BOX 78, E-28691, Villanueva de la Ca˜nada, Madrid, Spain Received ; Accepted ABSTRACT Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ∼ 57000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics.
    [Show full text]
  • Patrick Moore's Practical Astronomy Series
    Patrick Moore’s Practical Astronomy Series Other Titles in this Series Navigating the Night Sky Astronomy of the Milky Way How to Identify the Stars and The Observer’s Guide to the Constellations Southern/Northern Sky Parts 1 and 2 Guilherme de Almeida hardcover set Observing and Measuring Visual Mike Inglis Double Stars Astronomy of the Milky Way Bob Argyle (Ed.) Part 1: Observer’s Guide to the Observing Meteors, Comets, Supernovae Northern Sky and other transient Phenomena Mike Inglis Neil Bone Astronomy of the Milky Way Human Vision and The Night Sky Part 2: Observer’s Guide to the How to Improve Your Observing Skills Southern Sky Michael P. Borgia Mike Inglis How to Photograph the Moon and Planets Observing Comets with Your Digital Camera Nick James and Gerald North Tony Buick Telescopes and Techniques Practical Astrophotography An Introduction to Practical Astronomy Jeffrey R. Charles Chris Kitchin Pattern Asterisms Seeing Stars A New Way to Chart the Stars The Night Sky Through Small Telescopes John Chiravalle Chris Kitchin and Robert W. Forrest Deep Sky Observing Photo-guide to the Constellations The Astronomical Tourist A Self-Teaching Guide to Finding Your Steve R. Coe Way Around the Heavens Chris Kitchin Visual Astronomy in the Suburbs A Guide to Spectacular Viewing Solar Observing Techniques Antony Cooke Chris Kitchin Visual Astronomy Under Dark Skies How to Observe the Sun Safely A New Approach to Observing Deep Space Lee Macdonald Antony Cooke The Sun in Eclipse Real Astronomy with Small Telescopes Sir Patrick Moore and Michael Maunder Step-by-Step Activities for Discovery Transit Michael K.
    [Show full text]
  • ASTR-1020: Astronomy II Course Lecture Notes Section V
    ASTR-1020: Astronomy II Course Lecture Notes Section V Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students of the course ASTR-1020: Astronomy II at East Tennessee State University. Donald G. Luttermoser, ETSU V–1 V. Stellar Evolution: Birth A. Cloud contraction. 1. GMCs are usually in hydrostatic equilibrium unless some event occurs to cause a cloud to exceed its Jeans’ mass (MJ) and/or Jeans’ length, which is a gravitational stability criterion first derived by British physicist Sir James Jeans in the 1930s. What is the trigger? Any process that can cause a stable (M< MJ ) cloudlet to become unstable (M>MJ ). a) Agglomeration: Component cloudlets of GMC’s col- lide and sometime coalesce until M>MJ. b) Shock Wave Compression: A shock can be the trigger =⇒ it acts like a snow plow causing density to increase, and as a result, MJ drops. i) Spiral Density Wave: As Milky Way Galaxy rotates, its two spiral arms can compress a GMC, which then leads to star formation. ii) Ionization Front: O & B stars form very quickly once cloud collapse has started (see below). These produce H II regions from their strong ionizing UV flux, which initially expand outward away from the OB association. This ionization front heats the gas causing a shock to form. The shock can compress the gas such that M>MJ , which once again, leads to star formation. iii) Supernova Shocks: O & B stars evolve very quickly on the main sequence and die explosively V–2 ASTR-1020: Astronomy II as supernovae.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • The UV Perspective of Low-Mass Star Formation
    galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources).
    [Show full text]