Rbe6(Podo(OH)E, a NEW MINERAL SPECIES from THE

Total Page:16

File Type:pdf, Size:1020Kb

Rbe6(Podo(OH)E, a NEW MINERAL SPECIES from THE Canadian Mineralogist Vol. 23, pp. 4346 (1985) TIPTOPITE(Li,K,Na,Ga,n)rBe6(POdo(OH)e, A NEW MINERALSPECIES FROM THE BLACKHILLS, SOUTH DAKOTA JOELD. GRICE Mineral SciencesDivision, NationalMuseum of Natural Sciences,Ottawa, Ontario KIA 0M8 DONALD R. PEACOR Depdrtmentof GeologicalScienca, IJniversityof Michigan,Ann Arbor, Michigan48109, U,S.A. GEORGE W. ROBINSON AIN JERRY VAN VELTHUIZEN Mineral SciencesDivision, National Museumof Natural Sciences,Ottawa, Ontario KIA 0M8 WILLARD L. ROBERTS ANDTHOMAS J. CAMPBELL Museumof Geotogl, SouthDakota Schoolof Mines and Technolog, Rapid City, SouthDakota 57701'U.S-A. PETE J. DUNN Departmentof Mineral Sciences,Smithsonian Institution, Washington, D.C, 20560,U.S.A. poudres) en ABSTRACT tion X les plus intenses(m6thode des [d Aoxmot sont:3.8 I (40X120),3.65(4Xl I l)' 3.36(s0X030)' Tiptopite is a new mineral specic from the Tip Top mine, 2.966(100)(12r),2.525(90X040), 2.348(70)(002)' near Custer, South Dakota. It occurson massiveberyl in 2.223(60)(04r),2.0'77 (s0)(23r), 1.943(40)(330)et a phosphatepegmatite as a secondarymineral associated 1.606(40\(142).Les analyses par microsonde 6lectronique' with roscherite, fransoletite, montgomeryite and englishite. absorptionatomique et thermogravim6trieont donn6(en It forms clear, colorless,lustrous, radial aggregatesof elon- poids):Li2O 4.5, Na2O 6.1, K2O 9'9, BeO 15.l'-CaO- 4.3' gate hexagonalprisms up to 0.1 x 0. I x 2.0 mm. It is Mno o.zfanro30.3; P2o5 55.1, H2o 3.4'total 98.9. La brittle with an uneven fracture. The measured density is formule peut s'6crire (Li2.6sK1.67Na1.75Cag.68 2.65Q) e/cm3. Optically it is uniaxial positive, <,r1.551(l) Mne.qrsT.ss(Be5.36Pe.57A16.q5)_re.ooPe_.oopzr.sz[(OH):.:z and e 1.559(l).It is hexagonal,with popsiblespace-group eo))o jii.r, <iuideaiement, d'aprbs la densitdobserv6e, P63/m or P63,a 11.655(5),c 4.692(2)it, andZ = l. The (Li,K,Na,Ca," ! )sBe6P6024(0H)4. in the powderpattern strongeslten X-ray-diffraction lines Mots-cl6s:tiptopite, nouvelle espbce min6rale, Dakota du are: 3.81(40)(120),3.6s(40)(111), Id in A0X,r01 Sud,phosphate' Pegmatite. 3.36(50)(030), 2.966(100)(l2l). 2.525(e0)(040), 2.348(70)(002), 2.223(60)(04r), 2.077(s0)(231), 1.943(40X330) and I .606(40)(142). The combined results INrnooucrtoN of electron-microprobe,atomic absorption and thermal The Tip Top mine occursin one of many geologi- gravimetric analysesgive: Li2O, 4.5, Na2O 6.1, K2O 9.9, cally relatedphosphate-rich pegmatites in the Black BeO 15.1,CaO 4.3, MnO 0.2,Al2O3,0.3, P2O5 55.1, H2O Hills of South Dakota. During mining operationsfor yields formula 3.4, sum 98.9 wt.9o, which the beryl during the winter of 1981-1982'fracture fillings (Liz.eaKt.rz Na1.75Cae.66Mn6.6)p7.s0(Be5.36Po.srAb.os)re.ooof interesting and beautiful secondaryphosphate (POa)6.35]s3.72or, ideally, Po.ooOzr.sz[(OH):.:r were encountered.The crystallizedmate- (Li,K,Na,Ca,tr)s Be6P6O24(OH)a, basedon the observed minerals were independently density. rial was salvaged,and specimens sent for identification to the National Museum of Keywords:tiptopite, new mineral species,South Dakota' Natural Sciences,South Dakota Schoolof Mines and phosphate,pegmatite. Technologyand the SmithsonianInstitution. This unknowingly led to researchby independentgroups' SoNaMernE, which the authors discoveredprior to publication, La tiptopite, nouvelle espbcemin6rale, provient de la and which is reported in this synthesis.To date, 53 mine Tip Top, prds de Custer (Dakota du Sud); elle cris- phosphateminerals have beeu identified from the Tip tallise sur le b6ryl massifcomme min6ral secondairedans Top pegmatite. This includes eight.new species: une pegmatirce phosphate.Elle estassoci6e d: roscherite' jahnsite, robertsiteand segelerite(Moore &Ito 1974), fransoletite,montgomeryite s1 gnglishlls.La tiptopite se fransoletite (Peacor et al. 1983),tinsleyite (Dunn e/ prdsenteen agr6gatsfibroradi6s transparents, incolores et al, 1984),tiptopite (this study), and two other spe- prismes peuventatteindre 0.1 x lustrdsof les hexagonaux cies.A descriptionof someof theseassemblages was 0. 1 x 2.0 mm. Elle est fragile' d fracture irr6gulibre.Sa given by Dunn et al. (1983),For variety in secon- densitdmesur6e est de 2.65(2).C'est un min6ral optique- this locality is certainly one menruniaxe positif, <oi.sstlt;, e 1.559(1).Hexagonal, il dary phosphateminerals, in New appartient au groupp spatial PQ/m ou P63, avec 4 of significance,along with the Palermo mine I 1.655(5),c 4.692(2)A, et Z = l. Lesdix raiesde diffrac- Hampshire and the Hagendorf pegmatitesin Ger- 43 M THE CANADIAN MINERALOGIST many. One of the authors CIJC) is presentlystudying ciclesof clear, colorlessneedles that havea vitreous the mineralogyof the Tip Top pegmatitein detail. lustre (Fig. l). Individual crystalsare prismatic and The new mineral tiptopiteis namedfor the local- sometimeshave cavernous tubes at the ends(Frg. 2). ity. Both the new mineral and namehave been appro- Prismsare generallyI to 2.0 mm in length and less ved by the Commissionon New Mineralsand Mine- than 0.1 mm in width. ral Names,IMA. Cotype specimensof tiptopite are The mineral is brittle and has an unevenfracture in the collectionsof the National Museum of Natu- with no apparentcleavage. The hardnesscould not ral Sciences,Ottawa (NMNS #48833),the Smithso- be measuredowing to the small sizeof the crystals. nian Institution, Washington,D.C. (#149609),and It doesnot fluorescein ultraviolet radiation, and it the Museum of Geology, South Dakota School of is only slightly solublein 3090HCl. The determina- Mines, Rapid City (SDSM & T #81-5102). tion of density was difficult owing to the elongate OccunnBxcs habit of the crystals. Any turbulence in the heavy liquid causedthe crystalsto tumble erratically. The Tiptopite is found at the Tip Top mine locatedjust best experimentalset-up prpved to be a 15 mL rec- southwestof the centreof Sec.8, T3S, R4E, about tangular glasscell, viewedthrough the side with a 8.5 km southwestof Custer,South Dakota. Tiptop- stereomicroscopeand back illuminated with pola- ite wasdiscovered during mining operationsin 1981 rized light. Bromoform was diluted l:1 with butyl and 1982,in the recoveryofberyl from the outer- alcohol, which has approximatelythe samevapor intermediatezone. This zone consistsof large crystals pressureas bromoform. This minimized evaporation of microcline perthite, triphylite, quartz and mus- of the diluent and reducedthe "boiling" turbulence. covite, with minor amounts of beryl, albite, fluor- The experimentwas repeatedfour times using several apatite, elbaite and columbite-tantalite. Tiptopite crystalseach time. The resulting averagemeasured was abundant mine, at the but subsequentmining densityis 2.65Q)g/cm3. activity has removed most, if not all, of the area where it was found. Tiptopite occurspredominantly CRYSTALLOGRAPHY along fracture surfaces in beryl, occasionally in quartz, and rarely in microcline perthite. Morphology All observedcrystals of tiptopite have the same AppEARANcEaNn Puvsrcal PRopERTIES simple morphology: an elongatehexagonal prism Tiptopite occursas radial spraysand divergentfas- {100} and a basalpinacoid {001}. Optical data Optically, tiptopite is uniaxial positive (positive elongation)with indicesofrefraction co1.551(l) and e 1.559(l),measured in sodiumlight O 589 nm). X-ray-dffiaction data X-ray precessionphotographs show tiptopite to be hexagonal,with a choiceofpossible space-group P6/3/n1 or P63. The unit-cell dimensions were refined using X-ray powder-diffraction data obtained using a I 14.6-mm-diameter Debye-Scherrer camera with CuKcuradiation (Table l). The refined unit-cell parametersand volume are:.a 11.655(5),c 4.692(2) A and V 551.97(7.1)A3. The unit cell, spacegroup and generalconforma- tion of the formula are similar to those of cancrinite. For example,Grundy & Hassan(1982) showed that a carbonate-rich cancrinitp has cell parameters a 12.590(3)and c 5.117(l) A and spacegroup P6,. Thesecell parametersare larger than those of tiptop- ite by an amount consistentwith the differencesin radius of the tetrahedrally co-ordinated cations. Precessionphotographs of cancrinitewere directly comparedwith those of tiptopite, showing that there was similarity in the intensity values of equivalent Ftc. 1. Photomicrographof radial aggregatesof acicular reflectionsof eachphase. With this strong implica- tiptopite and white bals of englishite.Central sprayis tion of an isotypic relationship, three-dimensional 2.0 mm in diameter. intensitydata havebeen measured for tiptopite and TIPTOPITE, A NEW SPECIESFROM THE BLACK HILLS, SOUTH DAKOTA 45 Ftc. 2. Scanning-electron-microscopephotograph of tiptopite. 'I. an attempt is being made to determine the detailed TABLE X.RAYPOWDER-DIFFMCTION DATA crystal-structure. FORTIPTOPITE CrrsMrcar ColtposnroN dcal c dobs I hkl dcalc dobs 'f l0 5.83 5.79 1 241 1.767 1.767 2 Owing to the particular elementspresent, it was 020 5.05 5.08 2 042 L718 1.7t8 3 nece$saryto employ several analytical means to 011 4,2s 4.26 3 tsl I.691 1.692 3 120 3.815 3.808 4 232 1.648 1.647 1 determinethe chemicalcomposition of tiptopite. Ca, lll 3.654 3.652 4 142 1.606 1.606 4 K, Na, Al, Mn and P were determinedby wave- 021 3.440 3.441 3 341 1.564 'L1.564 I 030 3.364 3.364 5 013 I.546 543 '2 length-dispersion electron-microprobe analyses, 't0 lErO 1 121 2.960 2.966 251 .l.510I.528 'I using montgomeryite (Ca, Al, P), maridite (Na), 130 2.800 2.800 % 113 .51I ' hornblende(K) and manganite(Mn) 031 2.734 2,736 1 332 1.496 1.495 2 as standards. 040 2.523 2.525 9 023 1.494 An ARL-SEMQ microprobewas 'I 'I usedwith operat- ]3l 2.404 2.403 161 1,462 .459 6 ing conditions of 15 kV, samplecurrent 0.025 pA 002 2.346 2.348 7 '123440 1.457 230 2.316 2.3t5 1 1.447 'I1,447 3 (standardizedon brass) and a defocusedbeam to 012 2.285 2,283 ,2 152 I.434 .434 '2 minimize volatilization of the lighter elements.The 041 2.222 2,223 6 260 1.400 1.397 '2 112 2.176 2.175 2 223 I.378 'II.378 | data were correctedusing the MAGIC-4 computer 231 2.076 2.077 5 062 1.367 .367 '2 program.
Recommended publications
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
    JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • A New Mineralspeciesfromthe Tip Top Pegmatite, Custer County, South Dakota, and Its Relationship to Robertsite'
    Canadian Mineralogist Vol. 27, pp. 451-455 (1989) PARAROBERTSITE, Ca2Mn~+(P04h02.3H20, A NEW MINERALSPECIESFROMTHE TIP TOP PEGMATITE, CUSTER COUNTY, SOUTH DAKOTA, AND ITS RELATIONSHIP TO ROBERTSITE' ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA OE8 B. DARKO STURMAN Departmentof Mineralogy,Royal OntarioMuseum, Toronto, OntarioM5S 2C6 PETE J. DUNN Departmentof MineralSciences,SmithsonianInstitution,Washington,D.C. 20560,U.S.A. WILLARD L. ROBERTS* South DakotaSchoolof Minesand Technology,Rapid City, South Dakota57701,U.S.A. ABSTRACT SOMMAIRE Pararobertsite is rare, occurring as thin red transparent La pararobertsite, espece rare, se presente sous forme single plates, or clusters of plates, on whitlockite at the Tip de plaquettes isolees minces et rouge transparent, ou en Top pegmatite, Custer County, South Dakota. Associated agregats de telles plaquettes, situees sur la whitlockite dans minerals are carbonate-apatite and quartz. Individual crys- la pegmatite de Tip Top, comte de Custer, Dakota du Sud. tals are tabular on {100}, up to 0.2 mm long and are less Lui sont associes apatite carbonatee et quartz. Les plaquet- than 0.02 mm in thickness. The streak is brownish red; tes, tabulaires sur {IOO}, atteignent une longueur de 0.2 luster vitreous; brittle; cleavage on {I oo} perfect; indiscer- mm et moins de 0.02 mm en epaisseur. La rayure est rouge nible fluorescence under long- or short-wave ultraviolet brunatre, et l' eclat, vitreux; cassante; clivage {100} par- light; hardness could not be determined, but the mineral fait; fluorescence non-discernable en lumiere ultra-violette apparently is very soft; D (meas.) 3.22 (4), D (calc.) 3.22 (onde courte ou longue); la durete, quoique indeterminee, (for the empirical formula) or 3.21 g/cm3 (for the ideal- semble tres faible; Dmes 3.22(4), Deale 3.22 (formule empi- ized formula).
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • Geology of the Pegmatites and Associated Rocks of Maine
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 445 GEOLOGY OF THE PEGMATITES AND ASSOCIATED ROCKS OF MAINE INCLUDING FELDSPAR, QUARTZ, MICA, AND GEM DEPOSITS BY EDSON S. BASTIN WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. Introduction.............................................................. 9 Definition of pegmatite...................................................... 10 Geographic distribution.................................................... 10 Geology.................................................................. 10 Bordering rocks....................................................... 10 Pegmatites in foliated rocks........................................ 11 General statement............................................ 11 Sedimentary foliates........................................... 11 Igneous foliates.....".......................................... 12 Pegmatites in massive granites.................................... 13 'Age.................................................................. 15 General character..................................................... 15 Mineral and chemical composition................................. 15 Mineral constituents.......................................... 15 Relative proportions of minerals............................... 18 Quartzose phases. ..............................^............. 18 Fluidal cavities............................................... 19 Sodium and lithium phases................................... 20 Muscovite
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Segelerite Camgfe3+(PO4)
    3+ Segelerite CaMgFe (PO4)2(OH) • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are long prismatic and striated k [001], to 1 mm, showing {100}, {010}, {110}, {121}, with a nearly square cross-section. Physical Properties: Cleavage: On {010}, perfect. Hardness = 4 D(meas.) = 2.67 D(calc.) = 2.610 Optical Properties: Semitransparent. Color: Pale green, yellow-green, brownish yellow, chartreuse, may be colorless. Luster: Vitreous. Optical Class: Biaxial (–). Pleochroism: X = Y = colorless; Z = yellow. Orientation: X = b; Y = a; Z = c. Absorption: Z > X = Y. α = 1.618(3) β = 1.635(3) γ = 1.650(3) 2V(meas.) = Large. Cell Data: Space Group: P bca. a = 14.826(5) b = 18.751(4) c = 7.307(1) Z = 8 X-ray Powder Pattern: Tip Top mine, South Dakota, USA. 2.868 (10), 9.31 (9), 5.34 (6), 3.729 (5), 3.421 (5), 4.97 (4), 4.65 (4) Chemistry: (1) (2) P2O5 33.1 35.55 Al2O3 0.4 Fe2O3 16.4 20.00 MnO 0.0 MgO 9.5 10.10 CaO 13.6 14.05 H2O 19.1 20.30 Total 92.1 100.00 (1) Tip Top mine, South Dakota, USA; by electron microprobe, total Fe as Fe2O3, H2Oby • loss on ignition; corresponds to Ca1.04Mg1.00(Fe0.89Al0.05)Σ=0.94(PO4)2.00(OH)0.89 3.84H2O. • (2) CaMgFe(PO4)2(OH) 4H2O. Mineral Group: Overite group. Occurrence: A rare alteration product of triphylite in zoned complex granite pegmatites.
    [Show full text]
  • Tavistockite and Bialite Discredited
    MINERALOGICAL MAGAZINE, MARCH 1969, VOL. 37, NO. 285 Tavistockite and bialite discredited P. G. EMBREY AND E. E. FEJER Department of Mineralogy, British Museum (Natural History) SUMMARY. Specimens of tavistockite fall into two groups: true tavistockite from the George and Charlotte mine, Tavistock, Devon, and wavellite from the Stenna Gwyn mine, St. Austell, Cornwall. Both were sold as tavistockite by the discoverer, Richard TaIling. Tavistockite proper is a fluorapatite, as shown by optical and X-ray examination, and the alumina and water in the original analysis are certainly derived from kaolinite with which the apatite is intimately associated. The published optical properties attributed to tavistockite were determined by E. S. Larsen on Stenna Gwyn material, and are those of wavellite. Re-examination of a portion of Buttgenbach's type bialite, which he related to tavistockite on optical grounds, shows it to be wavellite. TAVISTOCKITE has been a doubtful species from the time it was first described in 1865 by A. H. Church! as 'Hydrated Calcium-aluminic Phosphate (?)'. Its apparent validity has been established by successive appearances in all the standard works on systematic mineralogy, starting with J. D. Dana's renaming as tavistockite in 1868.2 The present study is perhaps as much historical as mineralogical, since Church's original material cannot be traced and other specimens present a confused picture both in naming and in locality. We have studied seventeen specimens (see table) that are or have at one time been labelled tavistockite, and find that they fall into two distinct groups that may readily be characterized by the mineral assemblages present.
    [Show full text]