Development of Passive Cooling at the Gobabeb Research & Training
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small-Scale Solar Heating and Cooling Systems
Small-Scale Solar Heating and Cooling Systems Package Systems for Combined Air Conditioning, Domestic Hot Water Preparation and Space Heating Standardized System Solutions Package Solutions on the Market Solar thermal domestic hot water heating (DHW) DHW & space heating Solar Combi & space cooling Solar Combi+ February 2010 Table of Contents What is a Solar Combi Plus System? ....................................3 Most Promising Climatic Regions .........................................4 Suitable Collector Technology .............................................6 Standard System Configurations .........................................9 Recommendations on System Design................................. 11 Package System - Climatewell........................................... 14 Package System - SOLution.............................................. 16 Package System - SorTech ............................................... 18 Contact .......................................................................... 20 http://www.solarcombiplus.eu Page 2 of 20 What is a Solar Combi Plus System? Solar combi plus systems use heat from solar thermal collectors to provide heating in winter, cooling in summer and domestic hot water (DHW) all year round. The figure below sketches the main components, which make up a typical system: (i) the solar thermal collector to provide the heat usually backed up by an auxiliary heat source, (ii) a storage tank can either be installed on the hot side, as shown in the figure, on the cold side or on both, (iii) a domestic -
Mary Seely, Visionary Scientist and Dedicated Teacher, Turns 70
Profile South African Journal of Science 105, November/December 2009 397 Mary Seely, visionary scientist and dedicated teacher, turns 70 Viv Ward and Joh Henschel Mary Seely’s name has been indelibly ecology, physiology, geology, geomor- associated with environmental science phology, archaeology and sociology. in southern Africa for more than three What, during this first phase of Mary’s P. Klintenberg decades. Her name is also synonymous career, were the keys to her success? It is with that of Gobabeb, a place in the clear that a convergence of fate, fortune Namib Desert which marks the beginning and Mary’s own special brand of energy, of her journey into the science of arid focus and self-motivation, all worked in of the Desert Research Foundation of ecosystems. The year 2009 is significant her favour.The locality and research func- Namibia (DRFN) opened a gateway in for two anniversaries: Mary’s 70th birth- tion of Gobabeb provided the perfect Namibia that served to connect science to day, and 50 years of research at Gobabeb. springboard to her career, together with development, translating desert knowl- The story begins with an expedition of the support of several colleagues and edge into policy, training and capacity, scientists in 1959, searching for a perfect friends who helped to open doors, which awareness and sustainable development. site for the study of the unique insect life she had no hesitation in entering! Much She simultaneously activated Gobabeb as in the Namib. They found that Gobabeb— of the success of the Gobabeb research a site for integrated training, as well as derived from its name in the Topnaar programme related to Mary’s commitment maintaining its research and long-term language, /Nomabeb, meaning the ‘place of to facilitating other people’s research and monitoring functions, while dedicating the fig tree’—met their criteria, and it was becoming directly involved with research enormous energy to securing funding for established as a research station in 1962. -
Designing a Real-World Course for Environmental Studies Students: Entering a Social-Ecological System
sustainability Article Designing a Real-World Course for Environmental Studies Students: Entering a Social-Ecological System Douglas T. Bolger 1,*, Karen Hutchins Bieluch 1, Flora E. Krivak-Tetley 2 ID , Gillian Maggs-Kölling 3 and Joseph Tjitekulu 4 1 Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA; [email protected] 2 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; fl[email protected] 3 Gobabeb Research and Training Centre, Walvis Bay P.O. Box 953, Namibia; [email protected] 4 Independent Researcher, Walvis Bay P.O. Box 2017, Namibia; [email protected] * Correspondence: [email protected] Received: 15 May 2018; Accepted: 15 July 2018; Published: 20 July 2018 Abstract: There is increasing interest in using “real-world pedagogy” to train students in ways that make them better able to contribute toward a more sustainable society. While there is a robust body of literature on the competencies that students need as sustainability professionals, there is a lack of specific guidance in the literature on how to teach for competency development or on how to structure a program or course to support competency development. Our research addresses this gap in the literature through a description and autoethnographic reflection on the design and early implementation of a “real-world” course. The course is from the Environmental Studies Program at Dartmouth College (Hanover, NH, USA), but it takes place in the environs of the Gobabeb Research and Training Centre in the Namib Desert of Namibia and in nearby Topnaar settlements. Our research objective was to articulate strategies to address the primary pedagogical challenges that we faced during the design and first five iterations of the course. -
Passive Cooling and Human Comfort
Passive Cooling and Human Comfort Author Fairey, P.W. Publication Number FSEC-DN-5-81 Copyright Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved. Disclaimer The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof. DesignNote Passive cooling and human comfort P.W. Fairey Florida Solar Energy Center Comfort within buildings is primarily controlled by dew point. When air is cooled to its dew point it is at four major factors: air temperature, mean radiant 100 percent relative humidity. This saturation point is temperature, humidity and airflow. Each can have a represented by the outer, curved boundary of the dominating effect. Their effects are not necessarily psychrometric chart. additive and practically never linear. There are, addi- The air temperature represented by the horizontal tionally, other factors which affect comfort including axis of the psychrometric chart is known as the dry clothing, activity level and climatization. -
Passive Solar Heating & Cooling Manual, Part 1 of 4
http://www.azsolarcenter.org/tech-science/solar-architecture/passive-solar-design-manual/passive- solar-design-manual-intro.html Passive Solar Heating & Cooling Manual, Part 1 of 4 NOTE: Booklet available in Microsoft Word format, RTF format and PDF. Published by Rodale Press, Inc., 1980. A project of Western SUN Arizona and Western Solar Utilization Network. Introduction to Solar Energy The sun's energy arrives on earth in the primary form of heat and light. Other aspects of solar radiation are less easily perceived and their detection often requires sophisticated equipment. All solar radiation travels through space in waves, and it is the length of these waves (the shortest is less than a millionth of an inch, the longest more than a thousand yards) by which all solar radiation is classified. The aggregate of all radiation aspects of the sun is called the solar spectrum. There are two important facets about the solar spectrum. 1. While the sun emits radiation in all wavelengths, it is the short wavelength radiation that accounts for the majority of energy in the solar spectrum. For example, the portion of the spectrum perceived as the visible light is a relatively small segment compared to the variety of spectrum wavelengths, yet accounts for 46 percent of the energy radiating from the sun. Another 49 percent, that which is perceived as heat, is derived from the infrared band of the spectrum. 2. The proportion of different wavelengths in the solar spectrum does not change and therefore the energy output of the sun remains constant. A measurement of this phenomenon is known as the Solar Constant, defined as the amount of heat energy delivered by solar radiation to a square foot of material set perpendicular to the sun’s rays for one hour at the outer edge of the earth’s atmosphere. -
Passive Cooling Methods for Energy Efficient Buildings with and Without Thermal Energy Storage – a Review
Energy Education Science and Technology Part A: Energy Science and Research 2012 Volume (issues) 29(2): 913-946 Passive cooling methods for energy efficient buildings with and without thermal energy storage – A review N. B. Geetha, R. Velraj* Anna University, Institute for Energy Studies, College of Engineering, Chennai, India. Contents 1. Introduction ……………………………………………………………………..914-915 2. Solar and heat protection techniques (Reduce heat gains)……………………...915-919 2.1. Microclimate………………………………………………………………..915-917 2.1.1. Vegetation…………………………………………………………..915-917 2.1.2. Water surfaces………………………………………………………917-917 2.2. Solar control…………………………………………………………………917-919 2.2.1. Aperture……………………………………………………………..917-918 2.2.2. Glazing………………………………………………………………918-919 2.2.3. Insulation…………………………………………………………….919-919 2.2.4. Shading………………………………………………………………919-919 3. Heat modulation or amortization technique (Modify heat gains)………………..919-926 3.1. Shifting of dayheat to night for removal……………………………………..920-924 3.1.1. Thermal mass in the construction material…………………………..920-920 3.1.2. Thermal mass using PCM based system……………………………..920-921 3.1.2.1. PCM in wallboards……………………………………………....921-922 3.1.2.2. PCM in ceiling & roof…………………………………………...922-923 3.1.2.3. PCM in glass windows…………………………………………..924-924 3.2. Use of night coolness for day cooling ……………………………………….924-926 4. Heat dissipation technique (Remove internal heat)……………………………….926-938 4.1. Natural ventilation……………………………………………………………926-932 4.1.1. Wind driven cross ventilation………………………………………...926-927 4.1.2. Buoyancy driven stack ventilation…………………………………....927-930 4.1.3. Single sided ventilation……………………………………………….930-932 4.2. Natural cooling………………………………………………………………..932-938 4.2.1. Evaporative cooling…………………………………………………...932-932 4.2.2. Ground cooling………………………………………………………..933-936 4.2.3. -
Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions
energies Article Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions Krzysztof Grygierek 1,* and Izabela Sarna 2 1 Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland 2 Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-237-24-97 Received: 25 September 2020; Accepted: 10 October 2020; Published: 13 October 2020 Abstract: Today, there is a great deal of emphasis on reducing energy use in buildings for both economic and environmental reasons. Investors strongly encourage the insulating of buildings. Buildings without cooling systems can lead to a deterioration in thermal comfort, even in transitional climate areas. In this article, the effectiveness of natural ventilation in a passive cooling building is analyzed. Two options are considered: cooling with external air supplied to the building by fans, or by opening windows (automatically or by residents). In both cases, fuzzy controllers for the cooling time and supply airflow control are proposed and optimized. The analysis refers to a typical Polish single-family building. Simulations are made with the use of the EnergyPlus program, and the model is validated based on indoor temperature measurement. The calculations were carried out for different climate data: standard and future (warmed) weather data. Research has shown that cooling with external air can effectively improve thermal comfort with a slight increase in heating demand. However, to be able to reach the potential of such a solution, fans should be used. -
A New Species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae)
A peer-reviewed open-access journal ZooKeysA new 851: 17–25species (2019) of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) 17 doi: 10.3897/zookeys.851.31802 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae) Jason E. Bond1, Trip Lamb2 1 Department of Entomology & Nematology, University of California Davis, Davis, California, USA 2 Department of Biology, East Carolina University, Greenville, North Carolina, USA Corresponding author: Jason E. Bond ([email protected]) Academic editor: Chris Hamilton | Received 20 November 2018 | Accepted 2 February 2019 | Published 3 June 2019 http://zoobank.org/894CD479-72A2-412D-B983-7CE7C2A54E88 Citation: Bond JE, Lamb T (2019) A new species of Pionothele from Gobabeb, Namibia (Araneae, Mygalomorphae, Nemesiidae). ZooKeys 851: 17–25. https://doi.org/10.3897/zookeys.851.31802 Abstract The mygalomorph spider genusPionothele Purcell, 1902 comprises two nominal species known only from South Africa. We describe here a new species, Pionothele gobabeb sp. n., from Namibia. This new species is currently only known from a very restricted area in the Namib Desert of western Namibia. Keywords Biodiversity, New species, Spider taxonomy, Pionothele, Nemesiidae, Mygalomorphae Introduction The nemesiid genus Pionothele Purcell, 1902 is a poorly known taxon comprising only two species described from southwestern South Africa. In Zonstein’s (2016) review of the genus, he redescribed and illustrated P. straminea Purcell, 1902 and described a second, new species P. capensis Zonstein, 2016. Similarities between female specimens of Pionothele and those in the genus Spiroctenus Simon 1889a suggest that some spe- cies described as the latter may be misidentified as the former (Zonstein 2016); con- sequently, Pionothele may be more widespread and diverse than is currently known. -
Ground Coupled Heat Exchangers a Review and Applications
Renewable and Sustainable Energy Reviews 47 (2015) 83–92 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Ground coupled heat exchangers: A review and applications Suresh Kumar Soni a,n, Mukesh Pandey a, Vishvendra Nath Bartaria b a Department of Energy Technology, RGPV, Bhopal, India b Department of Mechanical Engineering, LNCT, Bhopal, India article info abstract Article history: The use of ground coupled heat exchanger (GCHE) systems is increasing worldwide. They are mainly Received 23 September 2014 used for space conditioning, water heating, agricultural drying, bathing, swimming, etc. They reduce Received in revised form cooling load in summer and heating load in winter. GCHE systems make available excellent scope to 6 January 2015 conserve significant amount of primary energy and thus mitigating the impact on environment through Accepted 1 March 2015 emission reduction. This paper reviews the experimental and modeling studies carried out on GCHE systems. The reviewed literature focuses on performance of both types of GCHE systems viz. earth–air Keywords: heat exchanger (EAHE) and ground source heat pump (GSHP) systems and brings out their merits and GCHE demerits. EAHE & 2015 Elsevier Ltd. All rights reserved. GSHP Passive heating/cooling Contents 1. Introduction . 83 2. GCHEsystems.......................................................................................................84 3. Scenario of GCHE systems. 85 3.1. EAHE systems studies . 85 3.1.1. Experimental studies of EAHE systems. 85 3.1.2. Modeling of EAHE systems . 87 3.2. GSHP systems studies . 88 3.2.1. Experimental studies of GSHP systems. 88 3.2.2. Modeling of GSHP systems . 89 4. -
Implementation of Passive Radiative Cooling Technology in Buildings: a Review
buildings Review Implementation of Passive Radiative Cooling Technology in Buildings: A Review Suhendri , Mingke Hu * , Yuehong Su * , Jo Darkwa and Saffa Riffat Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK; [email protected] (S.); [email protected] (J.D.); saffa.riff[email protected] (S.R.) * Correspondence: [email protected] (M.H.); [email protected] (Y.S.) Received: 29 October 2020; Accepted: 21 November 2020; Published: 26 November 2020 Abstract: Radiative cooling (RC) is attracting more interest from building engineers and architects. Using the sky as the heat sink, a radiative cooling material can be passively cooled by emitting heat to the sky. As a result of the development of material technology, RC research has been revived, with the aim of increasing the materials’ cooling power as well as finding reliable ways to utilize it in cooling for buildings. This review identifies some issues in the current implementation of RC technologies in buildings from an architectural point of view. Besides the technical performance of the RC technologies, some architectural aspects, such as integration with architectural features, aesthetic requirements, as well as fully passive implementations of RC, also need to be considered for building application. In addition, performance evaluation of a building-integrated RC system should begin to account for its benefit to the occupant’s health and comfort alongside the technical performance. In conclusion, this review on RC implementation in buildings provides a meaningful discussion in regard to the direction of the research. Keywords: radiative cooling; architectural application; combination; passive design architecture 1. -
Introduction to Gobabeb Gobabeb Is an Internationally Recognised Research and Training Institution in Namibia
Introduction to Gobabeb Gobabeb is an internationally recognised research and training institution in Namibia. For over 50 years, Gobabeb has been conducting environmental and ecological research in the Namib Desert. In addition to its highly regarded research, environmental education and practical science training is a cornerstone of Gobabeb. Our mission is to be a “catalyst for gathering, understanding, and sharing knowledge of arid environments”, with the overall goal of enhancing Gobabeb as a vibrant, independent research hub. This document outlines the details of the Gobabeb internship programme—how to apply, what to bring, and what to expect. A stay at Gobabeb is a memorable and rewarding experience and we hope you apply! Where exactly is Gobabeb? Gobabeb is in Namibia in southwestern Africa. More specifically, Gobabeb (23°34’S, 15°03’E) is located in the Namib Desert, one of the most spectacular deserts in the world, within the Namib-Naukluft Park. It is ideally situated at the convergence of three different ecosystems: the massive dunes of the Namib Sand Sea, a recently declared World Heritage Site; the gravel plains, rocky desert and inselbergs of the Namib peneplains; and the Kuiseb riparian forest along an ephemeral river that only flows briefly during some years. The nearest town is Walvis Bay, 120 km away. The centre at Gobabeb consists of long-term research installations, laboratories, offices, staff and visitor accommodation, and educational facilities. It is not a village and has no shops, convenience stores, or restaurants. Who lives at Gobabeb? Gobabeb is home to a diverse group of people, including scientists, students, interns, and members of the local Topnaar community. -
A Water Wall Solar Design Manual for Environmentally Responsive Buildings That Increase Comfort, Save Money, and Protect the Environment
1 A Water Wall Solar Design Manual For environmentally responsive buildings that increase comfort, save money, and protect the environment David A. Bainbridge ©1981, 2005 1 2 TABLE OF CONTENTS ..............................................................................................................................................................................................................................................................1 A WATER WALL SOLAR .............................................................................................................................................................................................1 DESIGN MANUAL ..............................................................................................................................................................................................................1 TABLE OF CONTENTS.............................................................................................................................................................................................................................................................................. 2 Build your own water wall home or office complex............................................................................................................................................................................................................. 3 PREFACE ...................................................................................................................................................................................................................................3