How Noaa Procures Data for Weather Forecasting Hearing Committee on Science, Space, and Technology House

Total Page:16

File Type:pdf, Size:1020Kb

How Noaa Procures Data for Weather Forecasting Hearing Committee on Science, Space, and Technology House TO OBSERVE AND PROTECT: HOW NOAA PROCURES DATA FOR WEATHER FORECASTING HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS SECOND SESSION WEDNESDAY, MARCH 28, 2012 Serial No. 112–73 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 73–606PDF WASHINGTON : 2012 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois DONNA F. EDWARDS, Maryland W. TODD AKIN, Missouri BEN R. LUJA´ N, New Mexico RANDY NEUGEBAUER, Texas PAUL D. TONKO, New York MICHAEL T. MCCAUL, Texas JERRY MCNERNEY, California PAUL C. BROUN, Georgia TERRI A. SEWELL, Alabama SANDY ADAMS, Florida FREDERICA S. WILSON, Florida BENJAMIN QUAYLE, Arizona HANSEN CLARKE, Michigan CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, SUZANNE BONAMICI, Oregon Tennessee VACANCY E. SCOTT RIGELL, Virginia VACANCY STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT HON. ANDY HARRIS, Maryland, Chair DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland LYNN C. WOOLSEY, California FRANK D. LUCAS, Oklahoma BEN R. LUJA´ N, New Mexico JUDY BIGGERT, Illinois PAUL D. TONKO, New York W. TODD AKIN, Missouri ZOE LOFGREN, California RANDY NEUGEBAUER, Texas JERRY MCNERNEY, California PAUL C. BROUN, Georgia CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, Tennessee RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas (II) C O N T E N T S March 28, 2012 Page Witness List ............................................................................................................. 2 Hearing Charter ...................................................................................................... 3 Opening Statements Statement by Representative Andy Harris, Chairman, Subcommittee on En- ergy and Environment, Committee on Science, Space, and Technology, U.S. House of Representatives .................................................................................... 10 Written Statement ............................................................................................ 11 Statement by Representative Brad Miller, Ranking Member, Subcommittee on Energy and Environment, Committee on Science, Space, and Technology, U.S. House of Representatives ............................................................................ 12 Written Statement ............................................................................................ 13 Witnesses: PANEL I Ms. Mary Kicza, Assistant Administrator, National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Adminis- tration (NOAA) Oral Statement ................................................................................................. 15 Written Statement ............................................................................................ 18 Dr. Alexander MacDonald, Deputy Assistant Administrator for Research Lab- oratories and Cooperative Institutes, Office of Oceanic and Atmospheric Research, NOAA Mr. John Murphy, Chief, Programs and Plans Division, National Weather Service, NOAA PANEL II Mr. Eric Webster, Vice President and Director, Weather Systems, ITT Exelis Oral Statement ................................................................................................. 37 Written Statement ............................................................................................ 39 Dr. David Crain, Chief Executive Officer, GeoMetWatch Oral Statement ................................................................................................. 47 Written Statement ............................................................................................ 49 Mr. Bruce Lev, Vice Chairman, AirDat LLC Oral Statement ................................................................................................. 71 Written Statement ............................................................................................ 81 Dr. Berrien Moore, Dean, University of Oklahoma College of Atmospheric and Geographic Sciences, and Director, National Weather Center Oral Statement ................................................................................................. 82 Written Statement ............................................................................................ 84 Appendix I: Answers to Post-Hearing Questions Ms. Mary Kicza, Assistant Administrator, National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Adminis- tration (NOAA) ..................................................................................................... 100 (III) IV Page Dr. Alexander MacDonald, Deputy Assistant Administrator for Research Lab- oratories and Cooperative Institutes, Office of Oceanic and Atmospheric Research, NOAA ................................................................................................... 113 Mr. John Murphy, Chief, Programs and Plans Division, National Weather Service, NOAA ...................................................................................................... 122 Mr. Eric Webster, Vice President and Director, Weather Systems, ITT Exelis . 130 Dr. David Crain, Chief Executive Officer, GeoMetWatch .................................... 134 Mr. Bruce Lev, Vice Chairman, AirDat LLC ......................................................... 152 Dr. Berrien Moore, Dean, University of Oklahoma College of Atmospheric and Geographic Sciences, and Director, National Weather Center ................. 156 Appendix II: Additional Material for the Record Submitted Report for the Record by Mr. Bruce Lev, Vice Chairman, AirDat LLC ........................................................................................................................ 162 TO OBSERVE AND PROTECT: HOW NOAA PROCURES DATA FOR WEATHER FORECASTING WEDNESDAY, MARCH 28, 2012 HOUSE OF REPRESENTATIVES, SUBCOMMITTEE ON ENERGY AND ENVIRONMENT, COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY, Washington, DC. The Subcommittee met, pursuant to call, at 3:03 p.m., in Room 2318 of the Rayburn House Office Building, Hon. Andy Harris [Chairman of the Subcommittee] presiding. (1) 2 RALPH M HALL, TEXAS lD[)![ HE.HNICl:: JUHNSON, TEXA~ CHAIRMAN RANKING MEMBER U.S. HOUSE OF REPRESENTATIVES COMMITIEE ON SCIENCE, SPACE, AND TECHNOLOGY 2321 RAYBURN HOUSE OFFICE BUILDING WASH!NGTON, DC 20515,,6301 (202) 225-6371 www:'c'er>ccl'OtlSC$)OY Subcommittee on Energy & Environment To Observe and Protect: How NOAA Procures Data for Weather Forecasting Wednesday, March 28, 2012 2:00 p.m. to 4:00 p.m. 2318 Rayburn House Office Building Panel I Ms. Mary Kicza, Assistant Administrator, National Environmental Satellite, Data, and Information Service, NOAA Dr. Alexander MacDonald, Depnty Assistant Administrator [or Research Lahoratories and Cooperative Institntes, Office of Oceanic and Atmospheric Research, NOAA Mr. John Murphy, Chief, Programs and Plans Division, National Weather Service, NOAA Panel II Mr. Eric Webster, Vice President and Director, Weather Systems, ITT Exelis Dr. David Crain, Chief Executive Officer, GeoMetWatch Mr. Bruce Lev, Vice Chainllan, AirDat LLC Dr. Berrien Moore, Dean, University of Oklahoma College of Atmospheric and Geographic Sciences, and Director, National Weather Cellter 3 U.S. HOUSE OF REPRESENTATIVES COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY SUBCOMMITTEE ON ENERGY AND ENVIRONMENT HEARING CHARTER To Observe and Protect: How NOAA Procures Data/or Weather Forecasting Wednesday, March 28, 2012 2:00 p.m. to 4:00 p.m. 2318 Rayburn House Office Building PURPOSE On Wednesday, March 28, at 2:00 p.m. the Subcommittee Energy and Environment of the House Committee on Science, Space, and Technolo~ry Committee will hold a hearing to examine how the National Oceanic and Atmospheric Administration (NOAA) develops, evaluates, and executes plans to deliver the best and most cost effective data necessary to meet requirements for severe weather prediction and other observational needs. WITNESSES PANEL I Ms. Mary Kicla, Assistant Administrator, National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration (NOAA) Dr. Alexander MacDonald, Deputy Assistant Administrator for Research Laboratories and Cooperative Institutes, Office of Oceanic and Atmospheric Research, NOAA Mr. John Murphy, Chief, Programs and Plans Division, National Weather Service, NOAA PANEL II Mr. Eric Webster, Vice President and Director, Weather Systems, ITT Exelis Dr. David Crain, Chief Executive Otlker, GeoMetWatch Mr. Bruce Lev, Vice Chairman, AirDat LLC Dr. Berrien Moore, Dean, University of Oklahoma College of Atmospheric and Geographic Sciences, and Director, National Weather Center BACKGROUND
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE INVESTIGATION OF POLARIMETRIC MEASUREMENTS OF RAINFALL AT CLOSE AND DISTANT RANGES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By SCOTT EDWARD GIANGRANDE Norman, Oklahoma 2007 UMI Number: 3291249 UMI Microform 3291249 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 INVESTIGATION OF POLARIMETRIC MEASUREMENTS OF RAINFALL AT CLOSE AND DISTANT RANGES A DISSERTATION APPROVED FOR THE SCHOOL OF METEOROLOGY BY ____________________________________ Dr. Michael Biggerstaff ____________________________________ Dr. Alexander Ryzhkov ____________________________________ Dr. Jerry Straka ____________________________________ Dr. Guifu Zhang ____________________________________ Dr. Mark Yeary © Copyright by SCOTT EDWARD GIANGRANDE 2007 All Rights Reserved. ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to the numerous individuals who have helped me complete this work. To begin, this work would not have been possible without the guidance of my primary research advisor, Dr. Alexander Ryzhkov. His leadership and patience were instrumental throughout this process. I would also like to extend my gratitude to the other members of my committee: Drs. Michael Biggerstaff (Co-Chair and primary OU School of Meteorology advisor), Guifu Zhang, Jerry Straka, and Mark Yeary. The reviews performed by these individuals strengthened this work. I also thank the members of the Radar Research and Development Division (RRDD) at the National Severe Storms Laboratory (NSSL), which includes Drs. Douglas Forsyth, Dusan Zrnic, Dick Doviak, Allen Zahrai, Terry Schuur, Pam Heinselman, Valery Melnikov, Sebastian Torres, Pengfei Zhang and Svetlana Bachmann.
    [Show full text]
  • Meteosat Third Generation (MTG) Lightning Imager (LI) Calibration and 0-1B Data Processing
    Meteosat Third Generation (MTG) Lightning Imager (LI) calibration and 0-1b data processing Marcel Dobber EUMETSAT EUMETSAT-Allee 1, 64295 Darmstadt, Germany; +49-6151-807 7209 [email protected] Stephan Kox EUMETSAT EUMETSAT-Allee 1, 64295 Darmstadt, Germany; +49-6151-807 7248 [email protected] ABSTRACT The European Meteosat Third Generation (MTG) Lightning Imager (LI) is an instrument on the geostationary MTG Imager satellite series, for which the first satellite is scheduled for launch in 2021. The MTG series consists of six satellites in total: Four imager satellites, equipped with the Flexible Combined Imager (FCI) and Lightning Imager (LI) instruments, and two sounding satellites, with the Infrared Sounder (IRS) and Sentinel-4 UVN instruments. EUMETSAT will operate the satellites, instruments and ground facilities for MTG, including LI. The Lightning Imager will continuously provide lightning group and flashes information for almost the complete visible Earth disc from a geostationary orbit around zero degrees longitude in the time period 2021 to 2041. The instrument will measure day and night and will provide detected transient data from lightning optical pulses in the near-infrared at a spatial resolution that corresponds to 4.5 km x 4.5 km at the subsatellite point. The instrument also measures and provides background radiance images every 30 seconds. In this paper the Lightning Imager mission objectives and basic instrument detection principles will be described. In addition, the calibration (on ground and in orbit) and 0-1b data processing will be presented and discussed. at sub-satellite longitude of about 0 degrees, for a 1. SUMMARY geographical coverage area that covers almost the complete visible Earth disc.
    [Show full text]
  • FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
    Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel.
    [Show full text]
  • The Meteosat System
    THE METEOSAT SYSTEM EUM TD 05 Published by: EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) ©1998 EUMETSAT Design: Grigat und Neu THE METEOSAT SYSTEM December 1998 TABLE OF CONTENTS PREFACE .............................................................................. 5 Performance monitoring..............................................21-22 Telecommunications ...........................................................22 System frequencies ..........................................................23 1 OVERVIEW.................................................................. 6 User frequencies ...............................................................23 Introduction .............................................................................. 6 Objectives............................................................................ 7 4 THE GROUND SEGMENT................................. 24 Meteorological satellites ................................................... 7 Future programmes ............................................................ 7 Ground segment facilities ................................................24 Meteosat history ...............................................................11 Primary Ground Station ..................................................... 25 The programmes .............................................................12 Overview ........................................................................... 26 Meteosat services ..............................................................12
    [Show full text]
  • Meteosat SEVIRI Fire Radiative Power (FRP)
    1 Meteosat SEVIRI Fire Radiative Power (FRP) Products from the 2 Land Surface Analysis Satellite Applications Facility (LSA 3 SAF): Part 1 - Algorithms, Product Contents & Analysis 4 5 Wooster, M.J. 1,2 , Roberts, G. 3, Freeborn, P. H. 1,4 , Xu, W. 1, Govaerts, Y. 5, Beeby, R. 1, 6 He, J. 1, A. Lattanzio 6, Fisher, D. 1,2 , and Mullen, R 1. 7 8 9 1 King’s College London, Environmental Monitoring and Modelling Research Group, 10 Department of Geography , Strand, London, WC2R 2LS, UK. 11 2 NERC National Centre for Earth Observation (NCEO), UK. 12 3 Geography and Environment, University of Southampton, Highfield, Southampton 13 SO17 1BJ, UK . 14 4 Fire Sciences Laboratory, Rocky Mountain Research Station, U.S. Forest Service, 15 Missoula, Montana, USA. 16 5 Rayference, Brussels, Belgium. 17 6 MakaluMedia, Darmstadt, Germany 18 19 20 Abstract 21 Characterising changes in landscape fire activity at better than hourly temporal 22 resolution is achievable using thermal observations of actively burning fires made 23 from geostationary Earth observation (EO) satellites. Over the last decade or more, a 24 series of research and/or operational 'active fire' products have been developed from 25 geostationary EO data, often with the aim of supporting biomass burning fuel 26 consumption and trace gas and aerosol emission calculations. Such "Fire Radiative 27 Power" (FRP) products are generated operationally from Meteosat by the Land 28 Surface Analysis Satellite Applications Facility (LSA SAF), and are available freely 29 every 15 minutes in both near real-time and archived form. These products map the 30 location of actively burning fires and characterise their rates of thermal radiative 31 energy release (fire radiative power; FRP), which is believed proportional to rates of 32 biomass consumption and smoke emission.
    [Show full text]
  • SATELLITE DATA for Weather Forecasting
    VOL. 98 NO. 3 MAR 2017 Mars 2020 Mission Earth Science Jobs: Seven Projections Earth & Space Science News Landsat Archive of Greenland Glaciers SATELLITE DATA for Weather Forecasting Earth & Space Science News Contents MARCH 2017 VOLUME 98, ISSUE 3 PROJECT UPDATE 20 Using LANDSAT to Take the Long View on Greenland Glaciers A new web-based data portal gives scientists access to more than 40 years of satellite imagery, providing seasonal to long-term insights into outflows from Greenland’s ice sheet. PROJECT UPDATE 32 Seeking Signs of Life and More: NASA’s Mars 2020 Mission The next Mars rover will be able to land near rugged terrain, giving scientists access to diverse landscapes. It will also cache core samples, a first step in the quest 26 to return samples to Earth. COVER OPINION Transforming Satellite Data Seven Projections 14 for Earth and Space into Weather Forecasts Science Jobs What do recent political changes mean A NASA project spans the gap between research and operations, for the job market? In the short term, not introducing new composites of satellite imagery to weather much. But long term, expect privatization, forecasters. contract employment, and more. Earth & Space Science News Eos.org // 1 Contents DEPARTMENTS Editor in Chief Barbara T. Richman: AGU, Washington, D. C., USA; eos_ [email protected] Editors Christina M. S. Cohen Wendy S. Gordon Carol A. Stein California Institute Ecologia Consulting, Department of Earth and of Technology, Pasadena, Austin, Texas, USA; Environmental Sciences, Calif., USA; wendy@ecologiaconsulting University of Illinois at cohen@srl .caltech.edu .com Chicago, Chicago, Ill., José D.
    [Show full text]
  • Innovative Mini Ultralight Radioprobes to Track Lagrangian Turbulence Fluctuations Within Warm Clouds: Electronic Design
    sensors Article Innovative Mini Ultralight Radioprobes to Track Lagrangian Turbulence Fluctuations within Warm Clouds: Electronic Design Miryam E. Paredes Quintanilla 1,* , Shahbozbek Abdunabiev 1, Marco Allegretti 1, Andrea Merlone 2 , Chiara Musacchio 2 , Eros G. A. Pasero 1, Daniela Tordella 3 and Flavio Canavero 1 1 Politecnico di Torino, Department of Electronics and Telecommunications (DET), Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; [email protected] (S.A.); [email protected] (M.A.); [email protected] (E.G.A.P.); fl[email protected] (F.C.) 2 Istituto Nazionale di Ricerca Metrologica, Str. Delle Cacce, 91, 10135 Torino, Italy; [email protected] (A.M.); [email protected] (C.M.) 3 Politecnico di Torino, Department of Applied Science and Technology (DISAT), Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; [email protected] * Correspondence: [email protected] Abstract: Characterization of dynamics inside clouds remains a challenging task for weather forecast- ing and climate modeling as cloud properties depend on interdependent natural processes at micro- and macro-scales. Turbulence plays an important role in particle dynamics inside clouds; however, turbulence mechanisms are not yet fully understood partly due to the difficulty of measuring clouds at the smallest scales. To address these knowledge gaps, an experimental method for measuring the influence of small-scale turbulence in cloud formation in situ and producing an in-field cloud Citation: Paredes Quintanilla, M.E.; Lagrangian dataset is being developed by means of innovative ultralight radioprobes. This paper Abdunabiev, S.; Allegretti, M.; presents the electronic system design along with the obtained results from laboratory and field exper- Merlone, A.; Musacchio, C.; Pasero, ≈ ≈ E.G.A.; Tordella, D.; Canavero, F.
    [Show full text]
  • Relative Forecast Impact from Aircraft, Profiler, Rawinsonde, VAD, GPS-PW, METAR and Mesonet Observations for Hourly Assimilation in the RUC
    16.2 Relative forecast impact from aircraft, profiler, rawinsonde, VAD, GPS-PW, METAR and mesonet observations for hourly assimilation in the RUC Stan Benjamin, Brian D. Jamison, William R. Moninger, Barry Schwartz, and Thomas W. Schlatter NOAA Earth System Research Laboratory, Boulder, CO 1. Introduction A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3h-12h duration) wind, temperature, and relative humidity forecasts at different vertical levels. This assessment of the value of 7 different observation data types (aircraft (AMDAR and TAMDAR), profiler, rawinsonde, VAD (velocity azimuth display) winds, GPS precipitable water, METAR, and mesonet) on short-range numerical forecasts was carried out for a 10-day period from November- December 2006. 2. Background Observation system experiments (OSEs) have been found very useful to determine the impact of particular observation types on operational NWP systems (e.g., Graham et al. 2000, Bouttier 2001, Zapotocny et al. 2002). This new study is unique in considering the effects of most of the currently assimilated high-frequency observing systems in a 1-h assimilation cycle. The previous observation impact experiments reported in Benjamin et al. (2004a) were primarily for wind profiler and only for effects on wind forecasts. This new impact study is much broader than that the previous study, now for more observation types, and for three forecast fields: wind, temperature, and moisture. Here, a set of observational sensitivity experiments (Table 1) were carried out for a recent winter period using 2007 versions of the Rapid Update Cycle assimilation system and forecast model.
    [Show full text]
  • Weatherscope Weatherscope Application Information: Weatherscope Is a Stand-Alone Application That Makes Viewing Weather Data Easier
    User Guide - Macintosh http://earthstorm.ocs.ou.edu WeatherScope WeatherScope Application Information: WeatherScope is a stand-alone application that makes viewing weather data easier. To run WeatherScope, Mac OS X version 10.3.7, a minimum of 512MB of RAM, and an accelerated graphics card with 32MB of VRAM are required. WeatherScope is distributed freely for noncommercial and educational use and can be used on both Apple Macintosh and Windows operating systems. How do I Download WeatherScope? To download the application, go to http://earthstorm.ocs.ou.edu, select Data, Software, Download, or go to http://www. ocs.ou.edu/software. There will be three options: WeatherBuddy, WeatherScope, and WxScope Plugin. You will want to choose WeatherScope. There are two options under the application: Macintosh or Windows. Choose Macintosh to download the application. The installation wizard will automatically save to your desktop. Go to your desktop and double click on the icon that says WeatherScope- x.x.x.pkg. Several dialog messages will appear. The fi rst message will inform you that you are about to install the application. The next message tells you about computer system requirements in order to download the application. The following message is the Software License Agreement. It is strongly suggested that you read this agreement. If you agree, click Agree. If you do not agree, click Disagree and the software will not be installed onto your computer. The next message asks you to select a destination drive (usually your hard drive). The setup will run and install the software on your computer. You may then press Close.
    [Show full text]
  • (Bruce Ingleby): EUMETNET Observation Impact Studies
    Observation impact studies: EUMETNET and other EWGLAM meeting, ECMWF, 2 Oct 2017 Bruce Ingleby and Lars Isaksen ECMWF [email protected] © ECMWF October 17, 2017 Outline • Use of aircraft humidity data • Test with data from U.S. aircraft 2014 • Latest O-B statistics • Pressure from drifting buoys and ships • Radiosonde experiments (not EUMETNET) • Treatment of radiosonde drift • Other: Russian 1 ascent/day, RS41 descent data • Summary • Tomas Kral helped, others credited in later slides • Thanks to EUMETNET for supporting aircraft/buoy work EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 2 ECMWF Numerical Weather Prediction (NWP) system • Background (B) – 12 hour forecast – compared with observations (O), they are combined to make the Analysis – start of next forecast. • B and O have uncorrelated errors – very useful to look at O-B statistics • ECMWF produce daily coverage maps and monthly monitoring statistics feedback to data producers – partly via EUMETNET • Assessing usefulness of observations • Data denial studies (Observing System Experiments or OSEs) • Rerun NWP system without certain subsets of observations • Forecast Sensitivity to Observation Impact (FSOI) • Uses adjoint to estimate the contribution of each observation to reducing forecast error 24 hours later (relies on good analysis, linear approximation less good for near-surface variables, doesn’t look at cumulative effect) • See eg Cardinali (2009, QJ), Lorenc and Marriott (2014,QJ) EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 3 Extra aircraft data – especially
    [Show full text]
  • Storm Preparedness Kits –By Sparky Smith HELLO
    www.mesonet.org Volume 5 — Issue 7 — July 2014 connection Storm Preparedness Kits –by Sparky Smith HELLO. MY NAME IS SPARKY SMITH, and I am an pieces everywhere, but never the complete thing. I compiled Eagle Scout. First I will talk a little bit about myself. Then I all the lists and added a few things I thought were needed will tell you about how I came up with the idea for my project, in every emergency. The best way to get your project and actually show you how to build your own. I will also talk approved is to make it relatively inexpensive with easy to about the constraints and guidelines that I had to deal with obtain materials, and a personal aspect to show that you while doing the project. actually put thought into it. I have always been interested in weather. I went to the very One of the first things I did was go to a graphics design store first Mesonet Weather Camp, where I learned more about and had a nice looking label made to put on the storm kits, what kind of disasters occur and what other dangers they so people would know it was more than a five gallon bucket. bring. A storm kit has to last at least 1 day because many Thankfully, most of the products were donated, including the other dangers can arise after storms. For instance, you label. I made 20 storm kits, which would have cost about could be trapped in your shelter by debris or even have $3000, but it ended up costing about $1000-$1200.
    [Show full text]
  • The Effect of Climatological Variables on Future UAS-Based Atmospheric Profiling in the Lower Atmosphere
    remote sensing Article The Effect of Climatological Variables on Future UAS-Based Atmospheric Profiling in the Lower Atmosphere Ariel M. Jacobs 1,2 , Tyler M. Bell 1,2,3,4 , Brian R. Greene 1,2,5 and Phillip B. Chilson 1,2,5,* 1 School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd, Ste 5900, Norman, OK 73072, USA; [email protected] (A.M.J.); [email protected] (T.M.B.); [email protected] (B.R.G.) 2 Center for Autonomous Sensing and Sampling, University of Oklahoma, 120 David L. Boren Blvd., Ste 4600, Norman, OK 73072, USA 3 Cooperative Institute for Mesoscale Meteorological Studies, 120 David L. Boren Blvd., Ste 2100, Norman, OK 73072, USA 4 NOAA/OAR National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072, USA 5 Advanced Radar Research Center, University of Oklahoma, 3190 Monitor Ave., Norman, OK 73019, USA * Correspondence: [email protected] Received: 7 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Vertical profiles of wind, temperature, and moisture are essential to capture the kinematic and thermodynamic structure of the atmospheric boundary layer (ABL). Our goal is to use weather observing unmanned aircraft systems (WxUAS) to perform the vertical profiles by taking measurements while ascending through the ABL and subsequently descending to the Earth’s surface. Before establishing routine profiles using a network of WxUAS stations, the climatologies of the flight locations must be studied. This was done using data from the North American Regional Reanalysis (NARR) model. To begin, NARR data accuracy was verified against radiosondes.
    [Show full text]