Collaborative Research on Road Weather Observations and Predictions by Universities, State Departments of Transportation, and Na
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE INVESTIGATION OF POLARIMETRIC MEASUREMENTS OF RAINFALL AT CLOSE AND DISTANT RANGES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By SCOTT EDWARD GIANGRANDE Norman, Oklahoma 2007 UMI Number: 3291249 UMI Microform 3291249 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 INVESTIGATION OF POLARIMETRIC MEASUREMENTS OF RAINFALL AT CLOSE AND DISTANT RANGES A DISSERTATION APPROVED FOR THE SCHOOL OF METEOROLOGY BY ____________________________________ Dr. Michael Biggerstaff ____________________________________ Dr. Alexander Ryzhkov ____________________________________ Dr. Jerry Straka ____________________________________ Dr. Guifu Zhang ____________________________________ Dr. Mark Yeary © Copyright by SCOTT EDWARD GIANGRANDE 2007 All Rights Reserved. ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to the numerous individuals who have helped me complete this work. To begin, this work would not have been possible without the guidance of my primary research advisor, Dr. Alexander Ryzhkov. His leadership and patience were instrumental throughout this process. I would also like to extend my gratitude to the other members of my committee: Drs. Michael Biggerstaff (Co-Chair and primary OU School of Meteorology advisor), Guifu Zhang, Jerry Straka, and Mark Yeary. The reviews performed by these individuals strengthened this work. I also thank the members of the Radar Research and Development Division (RRDD) at the National Severe Storms Laboratory (NSSL), which includes Drs. Douglas Forsyth, Dusan Zrnic, Dick Doviak, Allen Zahrai, Terry Schuur, Pam Heinselman, Valery Melnikov, Sebastian Torres, Pengfei Zhang and Svetlana Bachmann. -
Analyzing Surface Weather Conditions on the Mesoscale
Analyzing Surface Weather Conditions on the Mesoscale John Horel Department of Meteorology University of Utah [email protected] • Acknowledgements – Dan Tyndall & Xia Dong (Univ. of Utah) – Manuel Pondeca (NCEP) • References – Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge – Myrick, D., and J. Horel, 2006: Verification over the Western United States of surface temperature forecasts from the National Digital Forecast Database. Wea. Forecasting, 21, 869-892. – Benjamin, S., J. M. Brown, G. Manikin, and G. Mann, 2007: The RTMA background – hourly downscaling of RUC data to 5-km detail. Preprints, 22nd Conf. on WAF/18th Conf. on NWP, Park City, UT, Amer. Meteor. Soc., 4A.6. – De Pondeca, M., and Coauthors, 2007: The status of the Real Time Mesoscale Analysis at NCEP. Preprints, 22nd Conf. on WAF/18th Conf. on NWP, Park City, UT, Amer. Meteor. Soc., 4A.5. – Horel, J., and B. Colman, 2005: Real-time and retrospective mesoscale objective analyses. Bull. Amer. Meteor. Soc., 86, 1477-1480. – Manikin, G. and M. Pondeca, 2009: Challenges with the Real Time Mesoscale Analysis (RTMA). 23WAF19NWP. June 2009. – Pondeca, M., G. Manikin, 2009: Recent improvements to the Real-Time Mesoscale Analysis (RTMA). 23WAF19NWP. June 2009. – Tyndall, D., J. Horel, M. Pondeca, 2009: Sensitivity of surface temperature analyses to background and observation errors. Submitted to Wea. Forecasting Class Discussion Points • Why are analyses needed? – Application driven: data assimilation for NWP (forecasting) vs. objective analysis -
Chris Gibson, National Weather Service, Salt Lake City, UT 84116
2.6 FARSITE WEATHER STREAMS FROM THE NWS IFPS SYSTEM Chris Gibson * National Weather Service, Salt lake City, Utah Carl Gorski Deputy Chief, Meteorological Services Division National Weather Service, Western Region Headquarters, Salt lake City, Utah 1. Introduction quality and flash flood potential forecasts (Gibson 2000). Products can be derived from the DFD in text, The National Oceanic and Atmospheric grib, graphical or interactive web based formats. This Administration’s National Weather Service (NWS) paper describes a demonstration project that creates provides a wide range of fire weather products and a tabular text product specifically designed as input services. Over the last several years, NWS Weather for the Fire Area Simulation Model (FARSITE). Forecast Offices (WFO) have begun to derive these services from a locally created Digital Forecast 2. FARSITE - Fire Area Simulation System Database (DFD) as part of the Interactive Forecast Process System (IFPS). The local DFD in turn is FARSITE was developed by Dr. Mark Finney used to populate the National Digital Forecast of the Department of Agriculture’s Missoula Fire Lab, Database. Fire Behavior Project. The Fire Area Simulator is a two-dimensional model of fire growth which The DFD allows the flexibility to generate incorporates existing fire behavior models of surface national, regional and local products tailored to the fire spread, crown fire, spotting, point source fire customer or partner who requests it. Products from acceleration and fuel moisture. The fire is modeled the DFD can be easily formatted in text, grib, assuming the fire front is a row of independent small graphical or interactive web based formats. -
Online Fruit Pest Management Tool (Utah Traps) in Montana What Is
MSU Western Ag Research Center 580 Quast Lane, Corvallis, MT 59870 http://agresearch.montana.edu/warc/index.html Online fruit pest management tool (Utah TRAPs) in Montana What is TRAPs? TRAPs is an online or app-based pest management tool. TRAPs uses degree days to predict insect emergence and life stages (phenology), providing site-specific information for monitoring and controlling certain pests. MSU Western Agricultural Research Center is collaborating with Utah State University to use TRAPs to assist with tree fruit pest management, including codling moth and fire blight. Codling moth is an insect pest; fire blight is a bacterial plant disease. Both affect apple and certain related species of fruit. Features • View pest emergence rates or predicted disease risk, and treatment information for: o Codling moth o Fire blight o Western cherry fruit fly o Spotted wing drosophila (SWD) o Other fruit tree pests • Get pest recommendations for up to 3 weeks in the future. • View graphs that display 24 hours of temperature, dew point, wind, and precipitation data. Available Online https://climate.usu.edu/traps/ The current Montana TRAPs sites are Corvallis (COVM), Stevensville (STVM8), Flathead Lake (FLB05), Helena (E5549), Bozeman (BOZM), Columbus (C9321), and Miles City (KMLS). You can find them by either navigating on the map to their location or selecting them from the drop-down menu underneath “others courtesy of USU MesoWest”. Download the App Search for Utah TRAPs Available for Android or iPhone Select from the Montana weather stations: Corvallis (COVM), Stevensville (STVM8), Flathead Lake (FLB05), Helena (E5549), Bozeman (BOZM), Columbus (C9321), or Miles City (KMLS). -
Weatherscope Weatherscope Application Information: Weatherscope Is a Stand-Alone Application That Makes Viewing Weather Data Easier
User Guide - Macintosh http://earthstorm.ocs.ou.edu WeatherScope WeatherScope Application Information: WeatherScope is a stand-alone application that makes viewing weather data easier. To run WeatherScope, Mac OS X version 10.3.7, a minimum of 512MB of RAM, and an accelerated graphics card with 32MB of VRAM are required. WeatherScope is distributed freely for noncommercial and educational use and can be used on both Apple Macintosh and Windows operating systems. How do I Download WeatherScope? To download the application, go to http://earthstorm.ocs.ou.edu, select Data, Software, Download, or go to http://www. ocs.ou.edu/software. There will be three options: WeatherBuddy, WeatherScope, and WxScope Plugin. You will want to choose WeatherScope. There are two options under the application: Macintosh or Windows. Choose Macintosh to download the application. The installation wizard will automatically save to your desktop. Go to your desktop and double click on the icon that says WeatherScope- x.x.x.pkg. Several dialog messages will appear. The fi rst message will inform you that you are about to install the application. The next message tells you about computer system requirements in order to download the application. The following message is the Software License Agreement. It is strongly suggested that you read this agreement. If you agree, click Agree. If you do not agree, click Disagree and the software will not be installed onto your computer. The next message asks you to select a destination drive (usually your hard drive). The setup will run and install the software on your computer. You may then press Close. -
Storm Preparedness Kits –By Sparky Smith HELLO
www.mesonet.org Volume 5 — Issue 7 — July 2014 connection Storm Preparedness Kits –by Sparky Smith HELLO. MY NAME IS SPARKY SMITH, and I am an pieces everywhere, but never the complete thing. I compiled Eagle Scout. First I will talk a little bit about myself. Then I all the lists and added a few things I thought were needed will tell you about how I came up with the idea for my project, in every emergency. The best way to get your project and actually show you how to build your own. I will also talk approved is to make it relatively inexpensive with easy to about the constraints and guidelines that I had to deal with obtain materials, and a personal aspect to show that you while doing the project. actually put thought into it. I have always been interested in weather. I went to the very One of the first things I did was go to a graphics design store first Mesonet Weather Camp, where I learned more about and had a nice looking label made to put on the storm kits, what kind of disasters occur and what other dangers they so people would know it was more than a five gallon bucket. bring. A storm kit has to last at least 1 day because many Thankfully, most of the products were donated, including the other dangers can arise after storms. For instance, you label. I made 20 storm kits, which would have cost about could be trapped in your shelter by debris or even have $3000, but it ended up costing about $1000-$1200. -
The Effect of Climatological Variables on Future UAS-Based Atmospheric Profiling in the Lower Atmosphere
remote sensing Article The Effect of Climatological Variables on Future UAS-Based Atmospheric Profiling in the Lower Atmosphere Ariel M. Jacobs 1,2 , Tyler M. Bell 1,2,3,4 , Brian R. Greene 1,2,5 and Phillip B. Chilson 1,2,5,* 1 School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd, Ste 5900, Norman, OK 73072, USA; [email protected] (A.M.J.); [email protected] (T.M.B.); [email protected] (B.R.G.) 2 Center for Autonomous Sensing and Sampling, University of Oklahoma, 120 David L. Boren Blvd., Ste 4600, Norman, OK 73072, USA 3 Cooperative Institute for Mesoscale Meteorological Studies, 120 David L. Boren Blvd., Ste 2100, Norman, OK 73072, USA 4 NOAA/OAR National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072, USA 5 Advanced Radar Research Center, University of Oklahoma, 3190 Monitor Ave., Norman, OK 73019, USA * Correspondence: [email protected] Received: 7 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: Vertical profiles of wind, temperature, and moisture are essential to capture the kinematic and thermodynamic structure of the atmospheric boundary layer (ABL). Our goal is to use weather observing unmanned aircraft systems (WxUAS) to perform the vertical profiles by taking measurements while ascending through the ABL and subsequently descending to the Earth’s surface. Before establishing routine profiles using a network of WxUAS stations, the climatologies of the flight locations must be studied. This was done using data from the North American Regional Reanalysis (NARR) model. To begin, NARR data accuracy was verified against radiosondes. -
The Center for Analysis and Prediction of Storms
CAPS Mission Statement • The Center for Analysis and Prediction of Storms (CAPS) was established at the University of Oklahoma in 1989 as one of the first 11 National Science Foundation Science and Technology Center. Its mission was, and remains the development of techniques for the computer-based prediction of high-impact local weather, such as individual spring and winter storms, with the NEXRAD (WSR-88D) Doppler radar serving as a key data source. 1 Forecast Funnel • Large Scale - provide synoptic flow patterns and boundary conditions to the Large Scale regional scale flow. • Regional Forecast - provide improved resolution for predicting regional scale Regional Scale events (large thunderstorm complexes, squall lines, heavy precipitation events) • Storm Scale - predict individual thunderstorm and groups of Storm Scale thunderstorms as well as initiation of convection. 2 ARPS System Lateral boundary conditions from large-scale models ARPS Data Assimilation System (ARPSDAS) Gridded first guess Mobile Mesonet Data Acquisition Parameter Retrieval and 4DDA Rawinsondes & Analysis Single-Doppler Velocity • AddACARS adas slide here…... CLASS ARPS Data Analysis Retrieval (SDVR) System (ADAS) SAO 4-D Variational Vel- data Satellite – Ingest Profilers – Quality control Variational ocity Adjustment Incoming – Objective analysis ASOS/AWOS Data & Thermo- – Archival Oklahoma Mesonet Assimilation dynamic Retrieval WSR-88D Wideband Product Generation and DataData SupportSupport SystemSystem ForecastForecast GenerationGeneration ARPSPLT andARPSV IEW -
National Weather Service 3Rd Quarter Review 2001
How To View Real-Time Precipitation Information Across Southeast Alaska: Meso-West demonstration Aaron Jacobs Senior Service Hydrologist/Meteorologist NWS Juneau Contact information: [email protected] 907-790-6821 What is MesoWest https://mesowest.utah.edu/ • MesoWest has been designed for use by National Weather Service meteorologists and other professionals. • The purpose of this site is to provide quick access to current data for a desired location. How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ 1: Select Alaska 1 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ 2 3 4 • 2: Under Region/Zone Select find AK-Juneau CWA from the dropdown list • 3: Under Network Select “All Networks” • 4: Select “Refresh Map” How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ 6 7 5 8 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ • 5: Hover your cursor over a site(black dot) to get current basic weather info(Time, 6 Wind, Temp, Dew point, 7 RH) • 6: Left click on site to get 5 24hr time series • 7: Select Precip to get 24hr rainfall • 8: To get “additional 8 Tabular & Graphical Display How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ 9 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ • 9:Change Date/Time and Change to Graphical Display 9 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ • 9:Change 10 Date/Time and Change to Graphical Display 9 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ • 9:Change 10 Date/Time and Change to Graphical Display 9 How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ How To Access MesoWest Data For Southeast Alaska https://mesowest.utah.edu/ • Thank you for your time. -
Washington County Utah Gap Wind Study Revisited
Washington County Utah Gap Wind Study Revisited ALEX E. LUKINBEAL NOAA/National Weather Service Salt Lake City, Utah ABSTRACT An updated approach is presented to identify and forecast winds reaching wind advisory or high wind warning criteria in Washington County, Utah using a combination of the surface pressure gradient, 700 hPa temperature change per twelve hours, and 700 hPa flow speed. Thirty-nine wind advisory or high wind warning events are identified during the cool seasons (October – April) from 1997-2016 using wind observations from the White Reef (WRRU1) observing site, located along I-15 northeast of St. George, UT. A quantitative decision tree is presented by retrieving the mean sea level pressure gradient from Cedar City (CDC) to Las Vegas (LAS) or Cedar City to Grand Canyon (GCN) from MesoWest observations and 1-hour METARs; 700 mb temperature and wind speed data is then retrieved from the North American Regional Reanalysis (NARR) using the Weather Archive and Visualization (WAVE) software. In addition to the decision tree, a synoptic climatology is also presented for wind advisory and high wind warning events. It is shown that high wind warning events are associated with a Rossby Wave breaking pattern. Advisory and warning events occur under two distinct synoptic regimes: frontal passages and backside shortwave trough environments. Warning events are typically associated with strong frontal passages, while advisory events are associated with the backside of a vigorous shortwave trough moving across southwestern Utah, with the trough axis positioned across the Utah and Colorado border. 1. Introduction Gap wind episodes in Washington County, Utah are associated with three primary ingredients: a strong surface pressure gradient, winds aloft parallel to canyon orientations, and a tight 700 hPa temperature gradient. -
Mesorefmatl.PM6.5 For
What is the Oklahoma Mesonet? Overview The Oklahoma Mesonet is a world-class network of environ- mental monitoring stations. The network was designed and implemented by scientists at the University of Oklahoma (OU) and at Oklahoma State University (OSU). The Oklahoma Mesonet consists of 114 automated stations covering Oklahoma. There is at least one Mesonet station in each of Oklahoma’s 77 counties. Definition of “Mesonet” “Mesonet” is a combination of the words “mesoscale” and “network.” • In meteorology, “mesoscale” refers to weather events that range in size from a few kilometers to a few hundred kilo- meters. Mesoscale events last from several minutes to several hours. Thunderstorms and squall lines are two examples of mesoscale events. • A “network” is an interconnected system. Thus, the Oklahoma Mesonet is a system designed to mea- sure the environment at the size and duration of mesoscale weather events. At each site, the environment is measured by a set of instru- ments located on or near a 10-meter-tall tower. The measure- ments are packaged into “observations” every 5 minutes, then the observations are transmitted to a central facility every 15 minutes – 24 hours per day year-round. The Oklahoma Climatological Survey (OCS) at OU receives the observations, verifies the quality of the data and provides the data to Mesonet customers. It only takes 10 to 20 minutes from the time the measurements are acquired until they be- come available to customers, including schools. OCS Weather Series Chapter 1.1, Page 1 Copyright 1997 Oklahoma Climatological Survey. All rights reserved. As of 1997, no other state or nation is known to have a net- Fun Fact work that boasts the capabilities of the Oklahoma Mesonet. -
Delivering Weather Data to Texas Pilots and Other Users
/ Technical Reuort Documentation Pae:e 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHW AffX-99/1799-1 4. Title and Subtitle 5. Report Date DELNERING WEATHER DATA TO TEXAS PILOTS AND OTHER February 1999 USERS • 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. James S. Noel, LuAnn Copeland, David Staas, and George B. Dresser Report 1799-1 9. Petforming Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Study No. 0-1799 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Research: Office of Research and Technology Transfer September 1997 - August 1998 P. 0. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Research performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration Research Study Title: Integration of Weather Data from All Available Sources to Enhance Aviation Weather Data Available in Texas 16. Abstract This project will ultimately serve to supplement the manner in which Texas pilots receive weather data. This will be accomplished first by inventorying the sources used by pilots to get weather data. The reliability, and convenience, of these sources will be evaluated and the unmet needs enumerated. The approach described above will be tailored to the needs of pilots with all levels of competency. This includes the weekend-only pilot interested in whether the local area will continue to have visual meteorological conditions (VMC) to those planning a cross-country routing in VMC, to the high time, instrument-rated pilot who will wonder about airframe icing on route or about low ceiling and visibility at the destination.