Journal of Applied Fluid Mechanics, Vol. 9, No. 5, pp. 2053-2062, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.235.23709 Effects of Temperature on the Wave Soldering of Printed Circuit Boards: CFD Modeling Approach M. S. Abdul Aziz1†, M. Z. Abdullah1, C. Y. Khor2, F. Che Ani3, 4 and N. H. Adam5 1 School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia. 2Faculty of Engineering Technology (FETech), Universiti Malaysia Perlis (UniMAP), Level 1, Block S2, UniCITI Alam Campus, Sungai Chuchuh, 02100, Padang Besar, Perlis, Malaysia. 3Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 4Jabil Circuit Sdn. Bhd., Bayan Lepas Industrial Park, 11900, Bayan Lepas, Penang, Malaysia. 5Soil Instruments (M) Sdn Bhd, No. 12, Jln Utarid u5/14, Seksyen u5, Shah Alam, Selangor, Malaysia. †Corresponding Author Email:
[email protected] (Received July 1, 2014; accepted November 25, 2015) ABSTRACT This study investigated the effects of temperature on the wave soldering of printed circuit boards (PCBs) using three-dimensional finite volume analysis. A computational solder pot model consisting of a six-blade rotational propeller was developed and meshed using tetrahedral elements. The leaded molten solder (Sn63Pb37) distribution and PCB wetting profile were determined using the volume of fluid technique in the fluid flow solver, FLUENT. In this study, the effects of five different molten solder temperatures (456 K, 473 K, 523 K, 583 K, and 643 K) on the wave soldering of a 70 mm × 146 mm PCB were considered. The effects of temperature on wetting area, wetting profile, velocity vector, and full wetting time were likewise investigated.