Meme Machines and Consciousness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Following the Trail of Ants: an Examination of the Work of E.O
Sacred Heart University DigitalCommons@SHU Writing Across the Curriculum Writing Across the Curriculum (WAC) 2012 Following The rT ail Of Ants: An Examination Of The orW k Of E.O. Wilson Samantha Kee Sacred Heart University Follow this and additional works at: http://digitalcommons.sacredheart.edu/wac_prize Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, Other Genetics and Genomics Commons, Philosophy of Science Commons, Religion Commons, and the Theory, Knowledge and Science Commons Recommended Citation Kee, Samantha, "Following The rT ail Of Ants: An Examination Of The orkW Of E.O. Wilson" (2012). Writing Across the Curriculum. 2. http://digitalcommons.sacredheart.edu/wac_prize/2 This Article is brought to you for free and open access by the Writing Across the Curriculum (WAC) at DigitalCommons@SHU. It has been accepted for inclusion in Writing Across the Curriculum by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected]. Samantha Kee RS 299-Writing With Public Purpose Dr. Brian Stiltner March 2, 2012 Following the trail of ants An examination of the work of E.O. Wilson Edward Osborne Wilson was a born naturalist, in every sense of the word. As a child growing up in Alabama, he collected and studied species of snakes, flies, and the insect that became the basis of his life’s work, ants. He made a goal to record every species of ant that could be found in Alabama—a childhood project that would eventually lead to his first scientific publication. By age 13, Wilson discovered a red, non-native ant in a local town in Alabama, and by the time he entered the University of Alabama, the fire ant had become a significant threat to the state’s agriculture. -
Arxiv:2012.10390V2 [Cs.AI] 20 Feb 2021 Inaccessible
Opinion - Paper under review Deep Learning and the Global Workspace Theory Rufin VanRullen1, 2 and Ryota Kanai3 1CerCo, CNRS UMR5549, Toulouse, France 2ANITI, Universit´ede Toulouse, France 3Araya Inc, Tokyo. Japan Abstract Recent advances in deep learning have allowed Artificial Intelligence (AI) to reach near human-level performance in many sensory, perceptual, linguistic or cognitive tasks. There is a growing need, however, for novel, brain-inspired cognitive architectures. The Global Workspace theory refers to a large-scale system integrating and distributing infor- mation among networks of specialized modules to create higher-level forms of cognition and awareness. We argue that the time is ripe to consider explicit implementations of this theory using deep learning techniques. We propose a roadmap based on unsu- pervised neural translation between multiple latent spaces (neural networks trained for distinct tasks, on distinct sensory inputs and/or modalities) to create a unique, amodal global latent workspace (GLW). Potential functional advantages of GLW are reviewed, along with neuroscientific implications. 1 Cognitive neural architectures in brains and ma- chines Deep learning denotes a machine learning system using artificial neural networks with multiple \hidden" layers between the input and output layers. Although the underlying theory is more than 3 decades old [1, 2], it is only in the last decade that these systems have started to fully reveal their potential [3]. Many of the recent breakthroughs in AI (Artificial Intelligence) have been fueled by deep learning. Neuroscientists have been quick to point out the similarities (and differences) between the brain and these deep artificial neural networks [4{9]. The advent of deep learning has allowed the efficient computer implementation of perceptual and cognitive functions that had been so far arXiv:2012.10390v2 [cs.AI] 20 Feb 2021 inaccessible. -
In Defense of Massive Modularity
3 In Defense of Massive Modularity Dan Sperber In October 1990, a psychologist, Susan Gelman, and three anthropolo- gists whose interest in cognition had been guided and encouraged by Jacques Mehler, Scott Atran, Larry Hirschfeld, and myself, organized a conference on “Cultural Knowledge and Domain Specificity” (see Hirsch- feld and Gelman, 1994). Jacques advised us in the preparation of the conference, and while we failed to convince him to write a paper, he did play a major role in the discussions. A main issue at stake was the degree to which cognitive development, everyday cognition, and cultural knowledge are based on dedicated do- main-specific mechanisms, as opposed to a domain-general intelligence and learning capacity. Thanks in particular to the work of developmental psychologists such as Susan Carey, Rochel Gelman, Susan Gelman, Frank Keil, Alan Leslie, Jacques Mehler, Elizabeth Spelke (who were all there), the issue of domain-specificity—which, of course, Noam Chomsky had been the first to raise—was becoming a central one in cognitive psychol- ogy. Evolutionary psychology, represented at the conference by Leda Cosmides and John Tooby, was putting forward new arguments for seeing human cognition as involving mostly domain- or task-specific evolved adaptations. We were a few anthropologists, far from the main- stream of our discipline, who also saw domain-specific cognitive pro- cesses as both constraining and contributing to cultural development. Taking for granted that domain-specific dispositions are an important feature of human cognition, three questions arise: 1. To what extent are these domain-specific dispositions based on truly autonomous mental mechanisms or “modules,” as opposed to being 48 D. -
Animal Welfare and the Paradox of Animal Consciousness
ARTICLE IN PRESS Animal Welfare and the Paradox of Animal Consciousness Marian Dawkins1 Department of Zoology, University of Oxford, Oxford, UK 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 1 2. Animal Consciousness: The Heart of the Paradox 2 2.1 Behaviorism Applies to Other People Too 5 3. Human Emotions and Animals Emotions 7 3.1 Physiological Indicators of Emotion 7 3.2 Behavioral Components of Emotion 8 3.2.1 Vacuum Behavior 10 3.2.2 Rebound 10 3.2.3 “Abnormal” Behavior 10 3.2.4 The Animal’s Point of View 11 3.2.5 Cognitive Bias 15 3.2.6 Expressions of the Emotions 15 3.3 The Third Component of Emotion: Consciousness 16 4. Definitions of Animal Welfare 24 5. Conclusions 26 References 27 1. INTRODUCTION Consciousness has always been both central to and a stumbling block for animal welfare. On the one hand, the belief that nonhuman animals suffer and feel pain is what draws many people to want to study animal welfare in the first place. Animal welfare is seen as fundamentally different from plant “welfare” or the welfare of works of art precisely because of the widely held belief that animals have feelings and experience emotions in ways that plants or inanimate objectsdhowever valuableddo not (Midgley, 1983; Regan, 1984; Rollin, 1989; Singer, 1975). On the other hand, consciousness is also the most elusive and difficult to study of any biological phenomenon (Blackmore, 2012; Koch, 2004). Even with our own human consciousness, we are still baffled as to how Advances in the Study of Behavior, Volume 47 ISSN 0065-3454 © 2014 Elsevier Inc. -
Artificial Consciousness and the Consciousness-Attention Dissociation
Consciousness and Cognition 45 (2016) 210–225 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article Artificial consciousness and the consciousness-attention dissociation ⇑ Harry Haroutioun Haladjian a, , Carlos Montemayor b a Laboratoire Psychologie de la Perception, CNRS (UMR 8242), Université Paris Descartes, Centre Biomédical des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France b San Francisco State University, Philosophy Department, 1600 Holloway Avenue, San Francisco, CA 94132 USA article info abstract Article history: Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to Received 6 July 2016 implement sophisticated forms of human intelligence in machines. This research attempts Accepted 12 August 2016 to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable Keywords: once we overcome short-term engineering challenges. We believe, however, that phenom- Artificial intelligence enal consciousness cannot be implemented in machines. This becomes clear when consid- Artificial consciousness ering emotions and examining the dissociation between consciousness and attention in Consciousness Visual attention humans. While we may be able to program ethical behavior based on rules and machine Phenomenology learning, we will never be able to reproduce emotions or empathy by programming such Emotions control systems—these will be merely simulations. Arguments in favor of this claim include Empathy considerations about evolution, the neuropsychological aspects of emotions, and the disso- ciation between attention and consciousness found in humans. -
Theoretical Models of Consciousness: a Scoping Review
brain sciences Review Theoretical Models of Consciousness: A Scoping Review Davide Sattin 1,2,*, Francesca Giulia Magnani 1, Laura Bartesaghi 1, Milena Caputo 1, Andrea Veronica Fittipaldo 3, Martina Cacciatore 1, Mario Picozzi 4 and Matilde Leonardi 1 1 Neurology, Public Health, Disability Unit—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; [email protected] (F.G.M.); [email protected] (L.B.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (M.L.) 2 Experimental Medicine and Medical Humanities-PhD Program, Biotechnology and Life Sciences Department and Center for Clinical Ethics, Insubria University, 21100 Varese, Italy 3 Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; veronicaandrea.fi[email protected] 4 Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, 21100 Varese, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2709 Abstract: The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue. -
Order Representations + a Rich Memetic Substrate
Language Needs A 2nd Order Representations + A Rich Memetic Substrate Joanna J. Bryson ([email protected]) Artificial models of natural Intelligence (AmonI) Group, University of Bath, England, UK Recent research has shown that human semantics can be 2nd-ord. soc. rep. no 2nd-ord reps replicated by surprisingly simple statistical algorithms for vocal imit. people birds memorizing the context in which words occur (McDonald no voc. imit. other primates most animals and Lowe, 1998; Landauer and Dumais, 1997). Assum- ing one accepts the point that semantics is the way that the word is used (which cannot be argued in one page, but see Figure 1: Human-like cultural evolution might require both Wittgenstein (1958) or Quine (1960), and which is the un- a rich memetic substrate as provided by vocal imitation, and derlying assumption of memetics) then why wouldn’t more the capacity for second order social representations. species have supported the evolution of this useful system of rapidly evolving cultural intelligence? Recent work in primatology tells us three relevant facts. might have evolved a sign language as rich as our vocal one. First, we know that apes and even monkeys do have cul- However, if I am correct, and the trick is that the richness of ture (de Waal and Johanowicz, 1993; Whiten et al., 1999). the substrate representing the strictly semantic, ungrounded That is, behavior is reliably and consistently transmitted be- cultural transmission is the key, then we now have an ex- tween individuals by non-genetic means. So we know that planation for why other primates don’t share our level of the question is not “why doesn’t animal culture exist”, but culture. -
Introduction ROBERT AUNGER a Number of Prominent Academics
CHAPTER 1: Introduction ROBERT AUNGER A number of prominent academics have recently argued that we are entering a period in which evolutionary theory is being applied to every conceivable domain of inquiry. Witness the development of fields such as evolutionary ecology (Krebs and Davies 1997), evolutionary economics (Nelson and Winter 1982), evolutionary psychology (Barkow et al. 1992), evolutionary linguistics (Pinker 1994) and literary theory (Carroll 1995), evolutionary epistemology (Callebaut and Pinxten 1987), evolutionary computational science (Koza 1992), evolutionary medicine (Nesse and Williams 1994) and psychiatry (McGuire and Troisi 1998) -- even evolutionary chemistry (Wilson and Czarnik 1997) and evolutionary physics (Smolin 1997). Such developments certainly suggest that Darwin’s legacy continues to grow. The new millennium can therefore be called the Age of Universal Darwinism (Dennett 1995; Cziko 1995). What unifies these approaches? Dan Dennett (1995) has argued that Darwin’s “dangerous idea” is an abstract algorithm, often called the “replicator dynamic.” This dynamic consists of repeated iterations of selection from among randomly mutating replicators. Replicators, in turn, are units of information with the ability to reproduce themselves using resources from some material substrate. Couched in these terms, the evolutionary process is obviously quite general. for example, the replicator dynamic, when played out on biological material such as DNA, is called natural selection. But Dennett suggests there are essentially no limits to the phenomena which can be treated using this algorithm, although there will be variation in the degree to which such treatment leads to productive insights. The primary hold-out from “evolutionarization,” it seems, is the social sciences. Twenty-five years have now passed since the biologist Richard Dawkins introduced the notion of a meme, or an idea that becomes commonly shared through social transmission, into the scholastic lexicon. -
Review of Jerry Fodor, the Mind Doesn't Work That Way
The Mind Doesn't Work That Way: The Scope and Limits of Computational Psychology (review) Ray Jackendoff Language, Volume 78, Number 1, March 2002, pp. 164-170 (Review) Published by Linguistic Society of America DOI: https://doi.org/10.1353/lan.2002.0024 For additional information about this article https://muse.jhu.edu/article/19286 [ Access provided at 10 May 2020 20:12 GMT from Linguistic Society of America ] 164 LANGUAGE, VOLUME 78, NUMBER 1 (2002) malist studies as the brief summary of the chapters has hopefully shown. All articles complement the work of the festschrift’s honoree, are well-written, and contain interesting data as well as intriguing analyses, pushing the minimalist spirit further ahead. REFERENCES BOSˇKOVIC´,Zˇ ELJKO. 1994. D-structure, theta-criterion, and movement into theta-positions. Linguistic Analysis 24.247–86. MM. 1997. Superiority effects with multiple wh-fronting in Serbo-Croatian. Lingua 102.1–20. CHOMSKY,NOAM. 1995. The minimalist program. Cambridge, MA: MIT Press. MM. 2001. Derivation by phase. Ken Hale: A life in language, ed. by Michael Kenstowicz, 1–52. Cambridge, MA: MIT Press. GRIMSHAW,JANE, and ARMIN MESTER. 1988. Light verbs and -marking. Linguistic Inquiry 19.205–32. HORNSTEIN,NORBERT. 1995. Logical form: From GB to minimalism. Oxford: Blackwell. KAYNE,RICHARD S. 1994. The antisymmetry of syntax. Cambridge, MA: MIT Press. ZAS Ja¨gerstr. 10–11 10117 Berlin Germany [[email protected]] The mind doesn’t work that way: Thescopeand limits of computational psychology. By JERRY FODOR. Cambridge, MA: MIT Press, 2000. Pp. 126. Reviewed by RAY JACKENDOFF, Brandeis University* As has been his wont in recent years, Jerry Fodor offers here a statement of deepest pessimism about the possibility of doing cognitive science except in a very limited class of subdomains. -
1. a Dangerous Idea
About This Guide This guide is intended to assist in the use of the DVD Daniel Dennett, Darwin’s Dangerous Idea. The following pages provide an organizational schema for the DVD along with general notes for each section, key quotes from the DVD,and suggested discussion questions relevant to the section. The program is divided into seven parts, each clearly distinguished by a section title during the program. Contents Seven-Part DVD A Dangerous Idea. 3 Darwin’s Inversion . 4 Cranes: Getting Here from There . 8 Fruits of the Tree of Life . 11 Humans without Skyhooks . 13 Gradualism . 17 Memetic Revolution . 20 Articles by Daniel Dennett Could There Be a Darwinian Account of Human Creativity?. 25 From Typo to Thinko: When Evolution Graduated to Semantic Norms. 33 In Darwin’s Wake, Where Am I?. 41 2 Darwin's Dangerous Idea 1. A Dangerous Idea Dennett considers Darwin’s theory of evolution by natural selection the best single idea that anyone ever had.But it has also turned out to be a dangerous one. Science has accepted the theory as the most accurate explanation of the intricate design of living beings,but when it was first proposed,and again in recent times,the theory has met with a backlash from many people.What makes evolution so threatening,when theories in physics and chemistry seem so harmless? One problem with the introduction of Darwin’s great idea is that almost no one was prepared for such a revolutionary view of creation. Dennett gives an analogy between this inversion and Sweden’s change in driving direction: I’m going to imagine, would it be dangerous if tomorrow the people in Great Britain started driving on the right? It would be a really dangerous place to be because they’ve been driving on the left all these years…. -
Theory of Mind and Darwints Legacy
Theory of mind and Darwin’s legacy John Searle1 Department of Philosophy, University of California, Berkeley, CA 94720 Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved April 30, 2013 (received for review February 15, 2013) We do not have an adequate theory of consciousness. Both dualism The Readiness Potential. Consciousness does exist, but it has very and materialism are mistaken because they deny consciousness is little importance because research on the readiness potential in part of the physical world. False claims include (i) behaviorism, (ii) the supplementary motor cortex shows that our actions are ini- computationalism, (iii) epiphenomenalism, (iv) the readiness poten- tiated before our becoming consciously aware of what we are tial, (v) subjectivity, and (vi) materialism. Ontological subjectivity doing. The brain decides to perform an action before the con- does not preclude epistemic objectivity. Observer relative phenom- scious mind can be aware of it (7). ena are created by consciousness, but consciousness is not itself observer relative. Consciousness consists of feeling, sentience, Objectivity and Subjectivity. Consciousness is not a suitable subject or awareness with (i) qualitativeness, (ii) ontological subjectivity, for serious scientific investigation; it is better left to theolo- (iii) unified conscious field, (iv) intentionality, and (v) intentional gians and philosophers. The reason is that science is by definition causation. All conscious states are caused by lower level neuro- objective, and consciousness is by definition subjective; there- biological processes in the brain, and they are realized in the brain fore, there cannot be a science of consciousness. This view is part as higher level features. -
Exploring the Utility of Memes for US Government Influence Campaigns
Exploring the Utility of Memes for U.S. Government Influence Campaigns Vera Zakem, Megan K. McBride, Kate Hammerberg April 2018 Cleared for Public Release DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. D RM-2018-U-017433-Final This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. SPECIFIC AUTHORITY: N00014-16-D-5003 4/17/2018 Request additional copies of this document through [email protected]. Photography Credit: Toy Story meme created via imgflip Meme Generator, available at https://imgflip.com/memegenerator, accessed March 24, 2018. Approved by: April 2018 Dr. Jonathan Schroden, Director Center for Stability and Development Center for Strategic Studies This work was performed under Federal Government Contract No. N00014-16-D-5003. Copyright © 2018 CNA Abstract The term meme was coined in 1976 by Richard Dawkins to explore the ways in which ideas spread between people. With the introduction of the internet, the term has evolved to refer to culturally resonant material—a funny picture, an amusing video, a rallying hashtag—spread online, primarily via social media. This CNA self-initiated exploratory study examines memes and the role that memetic engagement can play in U.S. government (USG) influence campaigns. We define meme as “a culturally resonant item easily shared or spread online,” and develop an epidemiological model of inoculate / infect / treat to classify and analyze ways in which memes have been effectively used in the online information environment. Further, drawing from our discussions with subject matter experts, we make preliminary observations and identify areas for future research on the ways that memes and memetic engagement may be used as part of USG influence campaigns.