The Life and Times of Edsger Dijkstra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typology of Programming Languages E Early Languages E
Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language. -
QATAR ASW ONLINE SCRIPT V.8.0 Pages
“DEXIGN THE FUTURE: Innovation for Exponential Times” ARNOLD WASSERMAN COMMENCEMENT ADDRESS VIRGINIA COMMONWEALTH UNIVERSITY IN QATAR 2 MAY 2016 مساء الخير .Good afternoon It is an honor to be invited to address you on this important day. Today you artists and designers graduate into the future. Do you think about the future? Of course you do. But how do you think about the future? Is the future tangible - or is it intangible ? Is it a subject for rational deliberation? Or is it an imagined fantasy that forever recedes before us? Is the future simply whatever happens to us next? Or is it something we deliberately create? Can we Dexign the Future? What I would like us to think about for the next few moments is how creative professionals like yourselves might think about the future. What I have to say applies as much to art as it does to design. Both are technologies of creative innovation. I will take the liberty here of calling it all design. My speech is also available online. There you can follow a number of links to what I will talk about here. The future you are graduating into is an exponential future. What that means is that everything is happening faster and at an accelerating rate. For example, human knowledge is doubling every 12 months. And that curve is accelerating. An IBM researcher foresees that within a few years knowledge will be doubling every 12 hours as we build out the internet of things globally. This acceleration of human knowledge implies that the primary skill of a knowledge worker like yourself is research, analysis and synthesis of the not-yet-known. -
ACM SIGACT News Distributed Computing Column 28
ACM SIGACT News Distributed Computing Column 28 Idit Keidar Dept. of Electrical Engineering, Technion Haifa, 32000, Israel [email protected] Sergio Rajsbaum, who edited this column for seven years and established it as a relevant and popular venue, is stepping down. This issue is my first step in the big shoes he vacated. I would like to take this opportunity to thank Sergio for providing us with seven years’ worth of interesting columns. In producing these columns, Sergio has enjoyed the support of the community at-large and obtained material from many authors, who greatly contributed to the column’s success. I hope to enjoy a similar level of support; I warmly welcome your feedback and suggestions for material to include in this column! The main two conferences in the area of principles of distributed computing, PODC and DISC, took place this summer. This issue is centered around these conferences, and more broadly, distributed computing research as reflected therein, ranging from reviews of this year’s instantiations, through influential papers in past instantiations, to examining PODC’s place within the realm of computer science. I begin with a short review of PODC’07, and highlight some “hot” trends that have taken root in PODC, as reflected in this year’s program. Some of the forthcoming columns will be dedicated to these up-and- coming research topics. This is followed by a review of this year’s DISC, by Edward (Eddie) Bortnikov. For some perspective on long-running trends in the field, I next include the announcement of this year’s Edsger W. -
Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier. -
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop ment of the algorithmic language ALGOL. Nevertheless, it seems perti nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text. -
FUNDAMENTALS of COMPUTING (2019-20) COURSE CODE: 5023 502800CH (Grade 7 for ½ High School Credit) 502900CH (Grade 8 for ½ High School Credit)
EXPLORING COMPUTER SCIENCE NEW NAME: FUNDAMENTALS OF COMPUTING (2019-20) COURSE CODE: 5023 502800CH (grade 7 for ½ high school credit) 502900CH (grade 8 for ½ high school credit) COURSE DESCRIPTION: Fundamentals of Computing is designed to introduce students to the field of computer science through an exploration of engaging and accessible topics. Through creativity and innovation, students will use critical thinking and problem solving skills to implement projects that are relevant to students’ lives. They will create a variety of computing artifacts while collaborating in teams. Students will gain a fundamental understanding of the history and operation of computers, programming, and web design. Students will also be introduced to computing careers and will examine societal and ethical issues of computing. OBJECTIVE: Given the necessary equipment, software, supplies, and facilities, the student will be able to successfully complete the following core standards for courses that grant one unit of credit. RECOMMENDED GRADE LEVELS: 9-12 (Preference 9-10) COURSE CREDIT: 1 unit (120 hours) COMPUTER REQUIREMENTS: One computer per student with Internet access RESOURCES: See attached Resource List A. SAFETY Effective professionals know the academic subject matter, including safety as required for proficiency within their area. They will use this knowledge as needed in their role. The following accountability criteria are considered essential for students in any program of study. 1. Review school safety policies and procedures. 2. Review classroom safety rules and procedures. 3. Review safety procedures for using equipment in the classroom. 4. Identify major causes of work-related accidents in office environments. 5. Demonstrate safety skills in an office/work environment. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Simula Mother Tongue for a Generation of Nordic Programmers
Simula! Mother Tongue! for a Generation of! Nordic Programmers! Yngve Sundblad HCI, CSC, KTH! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Inspired by Ole-Johan Dahl, 1931-2002, and Kristen Nygaard, 1926-2002" “From the cold waters of Norway comes Object-Oriented Programming” " (first line in Bertrand Meyer#s widely used text book Object Oriented Software Construction) ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula concepts 1967" •# Class of similar Objects (in Simula declaration of CLASS with data and actions)! •# Objects created as Instances of a Class (in Simula NEW object of class)! •# Data attributes of a class (in Simula type declared as parameters or internal)! •# Method attributes are patterns of action (PROCEDURE)! •# Message passing, calls of methods (in Simula dot-notation)! •# Subclasses that inherit from superclasses! •# Polymorphism with several subclasses to a superclass! •# Co-routines (in Simula Detach – Resume)! •# Encapsulation of data supporting abstractions! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! Simula example BEGIN! REF(taxi) t;" CLASS taxi(n); INTEGER n;! BEGIN ! INTEGER pax;" PROCEDURE book;" IF pax<n THEN pax:=pax+1;! pax:=n;" END of taxi;! t:-NEW taxi(5);" t.book; t.book;" print(t.pax)" END! Output: 7 ! ! KTH - CSC (School of Computer Science and Communication) Yngve Sundblad – Simula OctoberYngve 2010Sundblad! -
INTRODUCTION to PL/1 PL/I Is a Structured Language to Develop Systems and Applications Programs (Both Business and Scientific)
INTRODUCTION TO PL/1 PL/I is a structured language to develop systems and applications programs (both business and scientific). Significant features : v Allows Free format v Regards a program as a continuous stream of data v Supports subprogram and functions v Uses defaults 1 Created by Sanjay Sinha Building blocks of PL/I : v Made up of a series of subprograms and called Procedure v Program is structured into a MAIN program and subprograms. v Subprograms include subroutine and functions. Every PL/I program consists of : v At least one Procedure v Blocks v Group 2 Created by Sanjay Sinha v There must be one and only one MAIN procedure to every program, the MAIN procedure statement consists of : v Label v The statement ‘PROCEDURE OPTIONS (MAIN)’ v A semicolon to mark the end of the statement. Coding a Program : 1. Comment line(s) begins with /* and ends with */. Although comments may be embedded within a PL/I statements , but it is recommended to keep the embedded comments minimum. 3 Created by Sanjay Sinha 2. The first PL/I statement in the program is the PROCEDURE statement : AVERAGE : PROC[EDURE] OPTIONS(MAIN); AVERAGE -- it is the name of the program(label) and compulsory and marks the beginning of a program. OPTIONS(MAIN) -- compulsory for main programs and if not specified , then the program is a subroutine. A PL/I program is compiled by PL/I compiler and converted into the binary , Object program file for link editing . 4 Created by Sanjay Sinha Advantages of PL/I are : 1. Better integration of sets of programs covering several applications. -
Arxiv:1901.04709V1 [Cs.GT]
Self-Stabilization Through the Lens of Game Theory Krzysztof R. Apt1,2 and Ehsan Shoja3 1 CWI, Amsterdam, The Netherlands 2 MIMUW, University of Warsaw, Warsaw, Poland 3 Sharif University of Technology, Tehran, Iran Abstract. In 1974 E.W. Dijkstra introduced the seminal concept of self- stabilization that turned out to be one of the main approaches to fault- tolerant computing. We show here how his three solutions can be for- malized and reasoned about using the concepts of game theory. We also determine the precise number of steps needed to reach self-stabilization in his first solution. 1 Introduction In 1974 Edsger W. Dijkstra introduced in a two-page article [10] the notion of self-stabilization. The paper was completely ignored until 1983, when Leslie Lamport stressed its importance in his invited talk at the ACM Symposium on Principles of Distributed Computing (PODC), published a year later as [21]. Things have changed since then. According to Google Scholar Dijkstra’s paper has been by now cited more than 2300 times. It became one of the main ap- proaches to fault tolerant computing. An early survey was published in 1993 as [26], while the research on the subject until 2000 was summarized in the book [13]. In 2002 Dijkstra’s paper won the PODC influential paper award (renamed in 2003 to Dijkstra Prize). The literature on the subject initiated by it continues to grow. There are annual Self-Stabilizing Systems Workshops, the 18th edition of which took part in 2016. The idea proposed by Dijkstra is very simple. Consider a distributed system arXiv:1901.04709v1 [cs.GT] 15 Jan 2019 viewed as a network of machines. -
Chapter 1 Issues—The Software Crisis
Chapter 1 Issues—The Software Crisis 1. Introduction to Chapter This chapter describes some of the current issues and problems in system development that are caused The term "software crisis" has been used since the by software—software that is late, is over budget, late 1960s to describe those recurring system devel- and/or does not meet the customers' requirements or opment problems in which software development needs. problems cause the entire system to be late, over Software is the set of instructions that govern the budget, not responsive to the user and/or customer actions of a programmable machine. Software includes requirements, and difficult to use, maintain, and application programs, system software, utility soft- enhance. The late Dr. Winston Royce, in his paper ware, and firmware. Software does not include data, Current Problems [1], emphasized this situation when procedures, people, and documentation. In this tuto- he said in 1991: rial, "software" is synonymous with "computer pro- grams." The construction of new software that is both Because software is invisible, it is difficult to be pleasing to the user/buyer and without latent certain of development progress or of product com- errors is an unexpectedly hard problem. It is pleteness and quality. Software is not governed by the perhaps the most difficult problem in engi- physical laws of nature: there is no equivalent of neering today, and has been recognized as such Ohm's Law, which governs the flow of electricity in a for more than 15 years. It is often referred to as circuit; the laws of aerodynamics, which act to keep an the "software crisis". -
Design and Implementation of an Optionally-Typed Functional Programming Language
Design and Implementation of an Optionally-Typed Functional Programming Language Shaobai Li Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2017-215 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-215.html December 14, 2017 Copyright © 2017, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design and Implementation of an Optionally-Typed Functional Programming Language by Patrick S. Li A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering { Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Koushik Sen, Chair Adjunct Professor Jonathan Bachrach Professor George Necula Professor Sara McMains Fall 2017 Design and Implementation of an Optionally-Typed Functional Programming Language Copyright 2017 by Patrick S. Li 1 Abstract Design and Implementation of an Optionally-Typed Functional Programming Language by Patrick S. Li Doctor of Philosophy in Engineering { Electrical Engineering and Computer Sciences University of California, Berkeley Professor Koushik Sen, Chair This thesis describes the motivation, design, and implementation of L.B. Stanza, an optionally- typed functional programming language aimed at helping programmers tackle the complexity of architecting large programs and increasing their productivity across the entire software development life cycle.