Universidade De São Paulo Escola Superior De Agricultura “Luiz De Queiroz”

Total Page:16

File Type:pdf, Size:1020Kb

Universidade De São Paulo Escola Superior De Agricultura “Luiz De Queiroz” 0 Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Estudo dos perfis transcricionais em resposta ao estresse biótico e abiótico em cana-de-açúcar Fabiana Bombonato Mingossi Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Genética e Melhoramento de Plantas Piracicaba 2013 0 Fabiana Bombonato Mingossi Bióloga Estudo dos perfis transcricionais em resposta ao estresse biótico e abiótico em cana-de-açúcar versão revisada de acordo com a resolução CoPGr 6018 de 2011 Orientador: Prof. Dr. MARCIO DE CASTRO SILVA FILHO Tese apresentada para obtenção do título de Doutora em Ciências. Área de concentração: Genética e Melhoramento de Plantas Piracicaba 2013 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP Mingossi, Fabiana Bombonato Estudo dos perfis transcricionais em resposta ao estresse biótico e abiótico em cana-de-açúcar / Fabiana Bombonato Mingossi.- - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2013. 175 p: il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2013. 1. Cana-de-açúcar 2. Herbivoria 3. Diatraea saccharalis 4. Estresse hídrico 5. Parâmetros fisiológicos 6. RNA-Seq I. Título CDD 633.61 M664e “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 Dedico: Aos meus pais Luciana e Rubens, Pela confiança, constante apoio e amor incondicional. 4 5 AGRADECIMENTOS Primeiramente gostaria de agradecer ao meu orientador, Marcio de Castro Silva Filho, pela oportunidade de trabalhar em seu laboratório, pela confiança e amizade. À minha querida orientadora Rosanne Casu por acreditar e confiar plenamente no meu trabalho. Sua dedicação e ensinamentos foram essenciais durante meu doutorado sanduíche. À gloriosa ESALQ/USP e CSIRO Plant Industry, foi uma honra poder trabalhar em lugares com alta qualidade de ensino e pesquisa. À FAPESP (nº processo da bolsa no país 2009/15.920-2 e nº processo da bolsa BEPE 2011-21.364-5) e CAPES pelas concessões das bolsas de estudo. Ao Prof. Daniel Scherer de Moura e Marcelo Brandão por estarem sempre dispostos a ajudar, pelas sugestões de trabalho e amizade. Ao Rafael Colombi por sempre manter a organização do laboratório. Aos queridos amigos do laboratório de Biologia Molecular de Plantas: Thaís, Larissa, Flávia, Renata, Poliene, Elaine, Aline, Wellington, Horácio, Marcelo, Lucas, Marcos e Williane, e aos ex-alunos, Celso, Lígia, Christine, Marcela, Luíza, Ane e Ricardo, pelo ótimo convívio nesses anos de doutorado, pela troca de experiências e amizade. Aos amigos da CSIRO Plant Industry, especialmente Rosalie Sabburg, Johann Pierre, Jai Perroux, Jonathan Powel, Paul Melloy, Cass Guilfoyle, Thomas Parker e Anca e aos pesquisadores Donna Glassop, Anne Rae, Graham Bonnett, Jiri Stiller por tornarem o ambiente de trabalho um lugar prazeroso, pelo apoio, incentivo e amizade. As queridas flatmates Merran Anderssen e Leilani Alvarez por se tornarem uma família para mim na Austrália, e aos queridos amigos, Gabi Ferraz, Elisa Van Sluys Menck, Leonardo Neves, Tatiana Teixeira, Marina Braga, Henrique Junqueira, Flávia e Daniel 6 Botelho, Renato Crouzeilles, Angela Billar, Débora, Annica Carberry, Júlia McMurray, Guta Fretes, Ana Jelinic, sem vocês meu doutorado sanduíche não teria sido tão especial. Aos amigos pós-graduandos da ESALQ, Layanne, Ana Cláudia, Luciano, Vívian, Elisa, Bruna, Alice, Fábio Paulino, Fábio Pértille, Keini, Paulo, Ju Deganello, Paulinho, Adriano, Gisele Nunes e Giselle pelos ótimos anos de convívio e amizade em Piracicaba. Gostaria de agradecer também as minhas queridas amigas de Sertãozinho, especialmente, Tati, Vivi, Lívia, Livinha, Tânia e Júlia, amigas assim são para sempre! As minhas avós Nilce e Luíza e meus avôs Osvaldo e Rubens (in memoriam), tias, tios, primas e primos por todo carinho, incentivo e por compreenderem os momentos de ausência. Em especial gostaria de agradecer aos meus pais por não medirem esforços para me fazer feliz, pela confiança depositada em mim e eterno amor; e ao meu irmão Marcelo e à minha cunhada Lívia por todo incentivo e carinho. Enfim, a todos que de alguma forma contribuíram para a realização deste sonho, muito obrigada! 7 “Para realizar grandes conquistas, devemos não apenas agir, mas também sonhar; não apenas planejar, mas também acreditar.” Anatole France 8 9 SUMÁRIO RESUMO ............................................................................................................................ 11 ABSTRACT ........................................................................................................................ 13 1 INTRODUÇÃO ................................................................................................................ 15 2 REVISÃO BIBLIOGRÁFICA .......................................................................................... 17 2.1 Cana-de-açúcar .............................................................................................................. 17 2.2 Estresse biótico .............................................................................................................. 19 2.2.1 Interação planta-inseto................................................................................................. 19 2.2.2 Resposta de defesa das plantas aos insetos ................................................................... 19 2.2.3 Inibidores de protease e proteases de plantas ............................................................... 21 2.3 Estresse Abiótico............................................................................................................ 23 2.3.1 Déficit hídrico ............................................................................................................. 23 2.3.2 Mecanismos de regulação das respostas de defesa da planta ........................................ 24 2.3.3 Sequenciamento de nova geração (SNG): RNA-Seq .................................................... 26 3 MATERIAL E MÉTODOS ............................................................................................... 29 3.1 Estresse biótico .............................................................................................................. 29 3.1.1 Material biológico e desenho experimental .................................................................. 29 3.1.2 Extração de RNA total e síntese de cDNA ................................................................... 30 3.1.3 Monitoramento dos transcritos através de PCR em tempo real ..................................... 30 3.1.4 Análise Filogenética .................................................................................................... 31 3.2 Estresse abiótico ............................................................................................................. 32 3.2.1 Material biológico ....................................................................................................... 32 3.2.2 Parâmetros fisiológicos ............................................................................................... 32 3.2.3 Extração de RNA total e confecção do cDNA.............................................................. 33 3.2.4 PCR quantitativo em tempo real .................................................................................. 34 3.2.5 RNA-Seq .................................................................................................................... 34 3.2.6 Análises de bioinformática .......................................................................................... 35 4 RESULTADOS E DISCUSSÃO ....................................................................................... 37 4.1 Estresse biótico .............................................................................................................. 37 4.1.1 Genes de cana-de-açúcar diferencialmente expressos em resposta à herbivoria e selecionados para validação ................................................................................................. 37 4.1.2 Inibidores de protease do tipo Bowman-Birk (BBI) ..................................................... 40 4.1.3 Inibidores de protease: MPI e inibidor de subtilisina .................................................... 43 10 4.1.4 Serina proteases ........................................................................................................... 45 4.2 Estresse abiótico ............................................................................................................. 49 4.2.1 Parâmetros fisiológicos e monitoramento de transcritos por PCR quantitativo ............. 49 4.2.2 RNA-Seq..................................................................................................................... 53 4.2.3 Validação do RNA-Seq por PCR em tempo real .......................................................... 63 5 CONCLUSÕES ................................................................................................................ 67 REFERÊNCIAS................................................................................................................... 69 ANEXOS..................................................................................................................................81 11 RESUMO Estudo dos perfis transcricionais em resposta ao estresse biótico e abiótico em cana-de- açúcar A cana-de-açúcar é uma gramínea C4 de alta biomassa que acumula grandes quantidades de sacarose e é utilizada para
Recommended publications
  • Regulatory Effects of Cu, Zn, and Ca on Fe Absorption: the Intricate Play Between Nutrient Transporters
    Nutrients 2013, 5, 957-970; doi:10.3390/nu5030957 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Regulatory Effects of Cu, Zn, and Ca on Fe Absorption: The Intricate Play between Nutrient Transporters Nathalie Scheers Division of Life Sciences, Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; E-Mail: [email protected]; Tel.: +46-31-772-3821; Fax: +46-31-772-3830 Received: 4 February 2013; in revised form: 8 March 2013 / Accepted: 15 March 2013 / Published: 20 March 2013 Abstract: Iron is an essential nutrient for almost every living organism because it is required in a number of biological processes that serve to maintain life. In humans, recycling of senescent erythrocytes provides most of the daily requirement of iron. In addition, we need to absorb another 1–2 mg Fe from the diet each day to compensate for losses due to epithelial sloughing, perspiration, and bleeding. Iron absorption in the intestine is mainly regulated on the enterocyte level by effectors in the diet and systemic regulators accessing the enterocyte through the basal lamina. Recently, a complex meshwork of interactions between several trace metals and regulatory proteins was revealed. This review focuses on advances in our understanding of Cu, Zn, and Ca in the regulation of iron absorption. Ascorbate as an important player is also considered. Keywords: iron; absorption; Fe; Zn; Cu; Ca; ascorbate 1. Introduction Iron (Fe) is the second most abundant metal on earth and is a necessity for all life. Iron plays the key role in numerous enzymatic reactions due to its ease in shifting between the two common oxidation states, ferrous (Fe2+) and ferric (Fe3+) iron.
    [Show full text]
  • Classic Ketogenic Diet and Modified Atkins Diet in SLC2A1 Positive And
    nutrients Article Classic Ketogenic Diet and Modified Atkins Diet in SLC2A1 Positive and Negative Patients with Suspected GLUT1 Deficiency Syndrome: A Single Center Analysis of 18 Cases Jana Ruiz Herrero 1,* , Elvira Cañedo Villarroya 2 , Luis González Gutiérrez-Solana 3,4 , Beatriz García Alcolea 2, Begoña Gómez Fernández 2, Laura Andrea Puerta Macfarland 2 and Consuelo Pedrón-Giner 2 1 Department of Pediatric Gastroenterology, Pediatric Service, San Rafael Hospital, 28016 Madrid, Spain 2 Department of Gastroenterology and Nutrition, University Children’s Hospital Niño Jesús, 28009 Madrid, Spain; [email protected] (E.C.V.); [email protected] (B.G.A.); [email protected] (B.G.F.); [email protected] (L.A.P.M.); [email protected] (C.P.-G.) 3 Department of Neurology, University Children’s Hospital Niño Jesús, 28009 Madrid, Spain; [email protected] 4 Center for Biomedical Network Research on Rare Diseases (CIBERER), Health Institute Carlos III, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-035-933 Citation: Ruiz Herrero, J.; Cañedo Villarroya, E.; González Abstract: Background: Glucose transporter type 1 deficiency syndrome (GLUT1DS) is caused Gutiérrez-Solana, L.; García Alcolea, by mutations in the SLC2A1 gene and produces seizures, neurodevelopmental impairment, and B.; Gómez Fernández, B.; Puerta Macfarland, L.A.; Pedrón-Giner, C. movement disorders. Ketogenic dietary therapies (KDT) are the gold standard treatment. Similar Classic Ketogenic Diet and Modified symptoms may appear in SLC2A1 negative patients. The purpose is to evaluate the effectiveness Atkins Diet in SLC2A1 Positive and of KDT in children with GLUT1DS suspected SLC2A1 (+) and (-), side effects (SE), and the impact Negative Patients with Suspected on patients nutritional status.
    [Show full text]
  • A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders
    medicines Review A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders Andronicos Yiannikourides 1 and Gladys O. Latunde-Dada 2,* 1 Faculty of Life Sciences and Medicine, Henriette Raphael House Guy’s Campus King’s College London, London SE1 1UL, UK 2 Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected] Received: 30 June 2019; Accepted: 2 August 2019; Published: 5 August 2019 Abstract: Iron is a vital trace element for humans, as it plays a crucial role in oxygen transport, oxidative metabolism, cellular proliferation, and many catalytic reactions. To be beneficial, the amount of iron in the human body needs to be maintained within the ideal range. Iron metabolism is one of the most complex processes involving many organs and tissues, the interaction of which is critical for iron homeostasis. No active mechanism for iron excretion exists. Therefore, the amount of iron absorbed by the intestine is tightly controlled to balance the daily losses. The bone marrow is the prime iron consumer in the body, being the site for erythropoiesis, while the reticuloendothelial system is responsible for iron recycling through erythrocyte phagocytosis. The liver has important synthetic, storing, and regulatory functions in iron homeostasis. Among the numerous proteins involved in iron metabolism, hepcidin is a liver-derived peptide hormone, which is the master regulator of iron metabolism. This hormone acts in many target tissues and regulates systemic iron levels through a negative feedback mechanism. Hepcidin synthesis is controlled by several factors such as iron levels, anaemia, infection, inflammation, and erythropoietic activity.
    [Show full text]
  • Bacterial Protein Systems at the Membrane Interface Structural and Biophysical Studies of the E
    Bacterial protein systems at the membrane interface Structural and biophysical studies of the E. coli adhesion receptor intimin and the magnesium transporter MgtA Dissertation for the degree of Ph.D. by Julia Anna Weikum Centre for Molecular Medicine Norway Nordic EMBL Partnership for Molecular Medicine University of Oslo July 2020 © Julia Anna Weikum, 2020 Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo No. 2316 ISSN 1501-7710 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Hanne Baadsgaard Utigard. Print production: Reprosentralen, University of Oslo. Table of contents Acknowledgments ...................................................................................................................III List of publications ................................................................................................................. IV Abbreviations ........................................................................................................................... V 1. Introduction .......................................................................................................................... 1 1.1 Pathogenic Escherichia coli .............................................................................................. 2 1.1.1 Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) .................. 2 1.2 Adhesion .........................................................................................................................
    [Show full text]
  • Title: Cryo-EM Structure of the Mgte Mg2+ Channel Pore Domain
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270991; this version posted August 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Cryo-EM structure of the MgtE Mg2+ channel pore domain in Mg2+-free conditions reveals cytoplasmic pore opening Running title: Structure of the MgtE Mg2+ channel in Mg2+-free conditions Authors: Fei Jin1, Minxuan Sun1, Takashi Fujii2,3, Yurika Yamada2, Jin Wang4, Andrés D. Maturana5, Miki Wada6, Shichen Su7, Jinbiao Ma7, Hironori Takeda8, Tsukasa Kusakizako9, Atsuhiro Tomita9, Yoshiko Nakada-Nakura10, Kehong Liu10, Tomoko Uemura10, Yayoi Nomura10, Norimichi Nomura10, Koichi Ito6, Osamu Nureki9, Keiichi Namba2,3, So Iwata10,11, Ye Yu4, Motoyuki Hattori1,*. 1State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China; 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270991; this version posted August 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2Graduate School of Frontier Biosciences,
    [Show full text]
  • Source: the Arabidopsis Information Resource (TAIR);
    Table S1 List of targeted loci and information about their function in Arabidopsis thaliana (source: The Arabidopsis Information Resource (TAIR); https://www.arabidopsis.org/tools/bulk/genes/index.jsp). Locus Gene Model Gene Model Description Gene Model Primary Gene Symbol All Gene Symbols Identifier Name Type AT1G78800 AT1G78800.1 UDP-Glycosyltransferase superfamily protein_coding protein;(source:Araport11) AT5G06830 AT5G06830.1 hypothetical protein;(source:Araport11) protein_coding AT2G31740 AT2G31740.1 S-adenosyl-L-methionine-dependent methyltransferases protein_coding superfamily protein;(source:Araport11) AT5G11960 AT5G11960.1 magnesium transporter, putative protein_coding (DUF803);(source:Araport11) AT4G00560 AT4G00560.4 NAD(P)-binding Rossmann-fold superfamily protein_coding protein;(source:Araport11) AT1G80510 AT1G80510.1 Encodes a close relative of the amino acid transporter ANT1 protein_coding (AT3G11900). AT2G21250 AT2G21250.1 NAD(P)-linked oxidoreductase superfamily protein_coding protein;(source:Araport11) AT5G04420 AT5G04420.1 Galactose oxidase/kelch repeat superfamily protein_coding protein;(source:Araport11) AT4G34910 AT4G34910.1 P-loop containing nucleoside triphosphate hydrolases protein_coding superfamily protein;(source:Araport11) AT5G66120 AT5G66120.2 3-dehydroquinate synthase;(source:Araport11) protein_coding AT1G45110 AT1G45110.1 Tetrapyrrole (Corrin/Porphyrin) protein_coding Methylase;(source:Araport11) AT1G67420 AT1G67420.2 Zn-dependent exopeptidases superfamily protein_coding protein;(source:Araport11) AT3G62370
    [Show full text]
  • Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A Jephthah, Stéphanie; Månsson, Linda K.; Beli, Domagoj; Morth, Jens Preben; Skepö, Marie Published in: Biomolecules Link to article, DOI: 10.3390/biom10040623 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jephthah, S., Månsson, L. K., Beli, D., Morth, J. P., & Skepö, M. (2020). Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules, 10(4), [623]. https://doi.org/10.3390/biom10040623 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. biomolecules Article Physicochemical Characterisation of KEIF—The Intrinsically Disordered
    [Show full text]
  • Tesis Doctoral
    Bases estructurales del transporte de Mg2+ mediado por los factores homeostáticos CNNM2 y CNNM4, y de su interacción oncogénica con las fosfatasas PRL. Paula Giménez Mascarell 2019 Tesis dirigida por el Dr. L. Alfonso Martínez de la Cruz (c)2019 PAULA GIMENEZ MASCARELL Tabla de contenido Listado de abreviaturas....................................................................................................... 1 Resumen .............................................................................................................................. 7 1. Introducción ............................................................................................................... 11 1.1. HOMEOSTASIS ..................................................................................................... 13 1.2. TRANSPORTE DE IONES Y MOLÉCULAS A TRAVÉS DE LAS MEMBRANAS CELULARES: Canales y transportadores ................................................................................................ 13 1.3. EL MAGNESIO ...................................................................................................... 16 1.3.1. Homeostasis del Mg2+ en células procariotas. ............................................................................... 17 1.3.1.1. Moléculas que median el transporte de Mg2+ en células procariotas ................................. 17 1.3.2. Homeostasis del Mg2+ en organismos eucariotas. ........................................................................ 23 1.4. FACTORES HOMEOSTÁTICOS CNNM. ...................................................................
    [Show full text]
  • Interactions with Iron: Ferrous Iron Transport and Resistance in Shewanella Oneidensis Strain MR-1 a DISSERTATION SUBMITTED to T
    Interactions with Iron: Ferrous Iron Transport and Resistance in Shewanella oneidensis strain MR-1 A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Brittany Dawn Bennett IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Jeffrey A. Gralnick January 2017 © Brittany Bennett 2017 Acknowledgements First and foremost, I must thank my advisor, Jeffrey Gralnick, for being an amazing mentor. Your high expectations and confidence in my abilities have helped me achieve greater things than I would have thought possible otherwise. Thank you for fostering an environment of scientific rigor that just happens to also be really fun. The Gralnick lab was a wonderful place to complete my PhD, and I consider myself lucky to have spent the formative years of my scientific career there. The Gralnick lab would not have been such a fantastic environment without the contributions of all the fabulous people I have had the privilege to work with there. Benjamin Bonis, thank you for being a great friend and a good listener. I will miss our talks and your keen insight into everything scientific and otherwise. Aunica Kane, thank you for being so supportive and for giving me feedback on nearly everything I wrote in grad school. Your help and friendship have been invaluable. Audrey Harris, you are such a good friend, with uncanny intuition. My stomach still aches from talking and laughing with you late into the night. Nicholas Kotloski, thank you for patiently helping me during prelims, but more importantly thank you for shenanigans, the Greenskeepers, darts, ice ball, and all the other ways you made our lab so much fun.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/30/2021 02:46:15AM Via Free Access 444 K OGURA and Others · Inhibition of Placental GLUT1 Expression by Glucose
    443 High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo K Ogura, M Sakata, M Yamaguchi, H Kurachi and Y Murata Department of Obstetrics and Gynecology, Osaka University Medical School, 2–2 Yamadaoka Suita, Osaka, 565–0871 Japan (Requests for offprints should be addressed to M Sakata) Abstract Facilitative glucose transporter-1 (GLUT1) is expressed protein levels on day 4 of culture were significantly abundantly and has an important role in glucose transfer in reduced in cells incubated with 22 mM glucose compared placentas. However, little is known about the regulation of with control. Next, we rendered mice diabetic by admin- GLUT1 expression in placental cells. We studied the istering 200 µg/g body weight streptozotocin (STZ) on changes in placental GLUT1 levels in relation to changes day 8 of pregnancy. Animals were killed on day 12 of in glucose concentration in vitro and in vivo.Inin vitro pregnancy and placental tissues were obtained. [3H]Cyto- experiments, dispersed mouse placental cells were incu- chalasin B binding study was carried out to assess total bated under control (5·5 mM) and moderately high GLUTs, and GLUT1 mRNA and protein were measured (22 mM) glucose concentrations, and 2-deoxyglucose as above. [3H]Cytochalasin B binding sites in placentas uptake into cells was studied on days 1–5 of culture. from STZ-treated mice were significantly less than those After 4 days of incubation under both conditions, in control mice. Northern and immunoblot analyses GLUT1 mRNA and proten levels were examined by revealed a significant decrease in GLUT1 mRNA and Northern and immunoblot analyses.
    [Show full text]
  • Identification of a Vesicular Nucleotide Transporter
    Identification of a vesicular nucleotide transporter Keisuke Sawada*, Noriko Echigo*, Narinobu Juge*, Takaaki Miyaji*, Masato Otsuka†, Hiroshi Omote*, Akitsugu Yamamoto‡, and Yoshinori Moriyama*†§ *Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and †Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan; and ‡Department of Cell Biology, Nagahama Institute of Technology, Nagahama 526-0829, Japan Edited by Nathan Nelson, Tel Aviv University, Tel Aviv, Israel, and accepted by the Editorial Board February 11, 2008 (received for review January 7, 2008) ATP is a major chemical transmitter in purinergic signal transmis- A NPT4 sion. Before secretion, ATP is stored in secretory vesicles found in NPT1 SLC17A3 NPT homolog purinergic cells. Although the presence of active transport mech- SLC17A1 SLC17A4 anisms for ATP has been postulated for a long time, the proteins responsible for its vesicular accumulation remains unknown. The NPT3 transporter encoded by the human and mouse SLC17A9 gene, a SLC17A2 novel member of an anion transporter family, was predominantly VNUT expressed in the brain and adrenal gland. The mouse and bovine SLC17A9 counterparts were associated with adrenal chromaffin granules. Sialin SLC17A5 Proteoliposomes containing purified transporter actively took up VGLUT1 SLC17A7 ATP, ADP, and GTP by using membrane potential as the driving VGLUT3 VGLUT2 force. The uptake properties of the reconstituted transporter were SLC17A8 SLC17A6 similar
    [Show full text]
  • Expression of the Blood-Brain Barrier Markers GLUT1 and EBA in The
    ùNl ./_ O It Expression of the Blood-Brain Barrier Markers GLUT1 and EBA in the spinal cord and Male Reproductive Tract in Normal and Spinal Cord-Injured Rats By Jianjun Lu, MBBS, MSc Thesis submitted for the degree of Doctor of Philosophy to the UniversitY of Adelaide Department of Anatomical Sciences Medical School Faculty of Health Sciences The (IniversitY of Adelaide I2 December 2005 Table of Contents vtr ABSTRACT ..xtr DECLARATION.... Xtr ACKNOWLEDGEMENTS XIV PUBLICATIONS AND PRESENTATIONS XTV Publications XV Conference Abstract XVtr ABBREVIATIONS......... I Chapter I Introduction..... I l.lWhataretheblood-brainandblood-spinalcordbarriers? I 1.2 Historical review of the blood-brain barrier 3 1.3 Structure ofthe blood-brain barrier"""" vesicles' 3 1.3.1 Non-fenestrated ECs with low density of cytoplasmic 6 1.3.2 Tight junctions 9 1.4 Other components of the blood-brain baruier ...........12 ...........17 L5 Molecular anatomy of the blood-brain barrier ..,.,......17 1.5.1 Endothelial barrier antigen (EBA) 21 1.5.2 Glucose transporter 1 (GLUT1) ''.,,......28 1.5. 3 P - glycoprotein (P - SÐ......... ,,,..,'.,..32 1. 5.4 OX-47 antigen....' -. ......,,.., 36 e pt idas e I . 5. 5 Gammn- Glutamy I transp " " " " " " " " II 37 1.5.6 Molecular markers of tight iunctions """""' injury. 39 1.6 The blood-brain and blood-spirutl cord barriers after 39 1.6.1 Vascutar damage after brain and spinal cord injury 42 1.6.2 Expression of BBB markers after iniury' 42 1.6.2.1 EBA expression after brain and spinal cord injury 43 1.6.2.2 GLUTI expression after iniury molecular markers?.....,..,.
    [Show full text]