Comparison of Floral Structure and Ontogeny in Monoecious and Dioecious Species of the Palm Tribe Chamaedoreeae (Arecaceae; Arecoideae)

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Floral Structure and Ontogeny in Monoecious and Dioecious Species of the Palm Tribe Chamaedoreeae (Arecaceae; Arecoideae) Int. J. Plant Sci. 177(3):000–000. 2016. q 2016 by The University of Chicago. All rights reserved. 1058-5893/2015/17703-00XX$15.00 DOI: 10.1086/684262 COMPARISON OF FLORAL STRUCTURE AND ONTOGENY IN MONOECIOUS AND DIOECIOUS SPECIES OF THE PALM TRIBE CHAMAEDOREEAE (ARECACEAE; ARECOIDEAE) Felipe Castaño,* Xavier Marquínez,† Michèle Crèvecoeur,‡ Myriam Collin,* Fred W. Stauffer,§ and James W. Tregear1,* *Institut de Recherche pour le Développement (IRD), Unité Mixte de Recherche–Diversité, Adaptation, et Développement des Plantes, Centre IRD Montpellier, BP 64501, 911, avenue Agropolis, cedex 5, 34394 Montpellier, France; †Departamento de Biología, Universidad Nacional de q1 Colombia, sede Bogotá, Carrera 30 45-03, Edificio 421, Bogotá, Colombia; ‡Université de Genève, Faculté des Sciences, Département de Botanique et Biologie Végétale, quai Ernest Ansermet 30, 1211 Genève 4, Switzerland and §Conservatoire et Jardin Botaniques de la Ville de Genève, Université de Genève, Laboratoire de Systématique Végétale et Biodiversité, CP 60, CH-1292 Chambésy, Switzerland Editor: Bruce K. Kirchoff Premise of research. The sexuality of flowers is an important reproductive character in angiosperms. An insight into the evolutionary events that led to the appearance of monoecious and dioecious species can be gained by comparing closely related groups with contrasting characters. For this study, we focused on the tribe Chamaedoreeae, within which dioecy appears to have evolved twice from a monoecious ancestor. Methodology. To improve our knowledge of flower structure and ontogeny in this group, SEM and an- atomical sectioning were performed on inflorescences and flowers of the dioecious species Chamaedorea tepejilote and the monoecious species Hyophorbe lagenicaulis at different developmental stages. Pivotal results. Our data highlighted that the higher degree of spatial sexual separation seen in the dioe- cious C. tepejilote, compared to the monoecious H. lagenicaulis, is accompanied by a more accentuated di- morphism between male and female flowers. More specifically, in the case of C. tepejilote, the vestigial repro- ductive organs (staminodes of the female flower and pistillode of the male flower) are more rudimentary structures, in terms of their developmental differentiation, than their homologs in H. lagenicaulis. Conclusions. Our data suggest that the unisexual flowers already present in the monoecious ancestor of the Chamaedoreeae underwent further modifications either shortly before or since the appearance of dioecy in the genus Chamaedorea. These structural changes were presumably the result of genomic mutations causing earlier developmental arrest of the vestigial reproductive organs and are likely, in turn, to have conferred en- hanced resource-allocation efficiency. Keywords: flower development, Chamaedoreeae, Hyophorbe, Chamaedorea, monoecy, dioecy. Introduction duction in the possible negative consequences of hermaphro- ditism (e.g., gamete wastage), collectively referred to as sexual Flowers are the complex reproductive structures produced interference (Barrett 2002). Second, unisexual flowers provide by angiosperms and are considered to have played a central role a means to favor outbreeding and therefore heterosis or hybrid in the evolutionary success of this group (Endress 1994). They vigor (Freeman et al. 1997). Male and female flowers may be contain the organs necessary to produce pollen and ovules for produced on either the same plant (monoecious species) or sep- seed production. Depending on the species, male and female arate plants (dioecious species). Dioecy is a mechanism that reproductive organs may be separated in different ways in time ensures total outbreeding but can also be considered in some and space. In contrast to the situation in animals, plants are respects as inefficient in that only about half of the population mostly hermaphrodites. However, some species, representing bears seeds (Richards 1997). In monoecious species, the tempo- approximately 10% of flowering plants, produce unisexual ral separation of male and female functions, a condition known male or female flowers (Ainsworth 2000). Sexual separation be- as dichogamy, has also been interpreted as a mechanism to re- tween pistillate (female) and staminate (male) flowers is consid- duce self-fertilization (Bertin and Newman 1993). ered to confer several advantages. First, the diversification of Sexual differentiation and breeding systems are important roles between male flowers devoted to pollen production and factors in the formation of fruits and seeds, which are the most female flowers producing ovules and seeds results in a more common products harvested from crop plants. Moreover, sex- efficient use of available resources and, more generally, a re- ual systems are of key importance in population genetics and evolution. In the case of dioecy, a number of observations have 1 Author for correspondence; e-mail: [email protected]. been made regarding its geographical and phylogenetic distri- Manuscript received May 2015; revised manuscript received September 2015; bution. Examples of general tendencies observed for dioecious electronically published February XX, 2016. clades include tropical distribution, inconspicuous flower or 000 42822.proof.3d 1 Achorn International 01/13/16 01:35 000 INTERNATIONAL JOURNAL OF PLANT SCIENCES inflorescence production, lower species richness, and wind pol- appear to have evolved independently on numerous occasions lination (Heilbuth 2000). Dioecy has evolved numerous times in various different lineages within the family (Weiblen et al. in plants, and more than one evolutionary mechanism can ex- 2000). It is estimated that dioecy appeared at least nine times plain how it may originate from hermaphroditism (Weiblen during the radiation of the Arecaceae, from monoecious or her- et al. 2000). Once dioecy evolves from gender monomorphism, maphrodite ancestors. These multiple transitions make palms an the sexual morphs have different roles and are often observed ideal model to study the evolutionary pathways of sexual sys- to diverge in their characteristics, resulting in sexual dimor- tems at a morphological and a molecular level; however, at pres- phism (Barrett and Hough 2013). It has been suggested that ent, little is known about the molecular processes that reg- the most common evolutionary pathways involve an interme- ulate the sex of palm flowers. There is considerable interest in diate stage where plants are gynodioecious (separate female characterizing these pathways, however, since this would fa- and hermaphrodite plants) or monoecious (Barrett 2013). cilitate the genetic improvement of cultivated species and the Although plant sexuality has been studied for relatively few understanding of the population dynamics of wild ones, many species at the molecular genetic level, much progress has been of which are threatened. The best characterized species at the made in understanding the wider process of flower development molecular level are the monoecious African oil palm (Elaeis in recent years. The availability of whole-genome sequences for guineensis) and the dioecious date palm (Phoenix dactylifera), some model plants has allowed detailed studies of the molecular genome sequences having been obtained for both (Al-Dous determination of their flower structure. The ABC model, pro- et al. 2011; Al-Mssallem et al. 2013; Singh et al. 2013). Studies posed to explain the interaction of homeotic genes to control of flowerstructureandsexdeterminationhavealsobeencar- floral organ determination (Coen and Meyerowitz 1991) and ried out on both of these species (Adam et al. 2007, 2011; Daher later modified to include additional functions (Gutierrez and et al. 2010; Cherif et al. 2013). Davies 2000; Pelaz et al. 2000) has been fundamental for the This study focuses on two members of the tribe Chamae- understanding of floral development in angiosperms. The ma- doreeae, belonging to the almost entirely monoecious subfamily jority of genes implicated in the ABC model encode members Arecoideae (Asmussen et al. 2000, 2006; Asmussen and Chase of the MADS-box family of transcription factors (Becker and 2001; Lewis and Doyle 2002). The tribe Chamaedoreeae has Theissen 2003), the latter being involved in most aspects of been resolved as monophyletic in several phylogenetic analyses the plant’s life cycle (Gramzow and Theissen 2010). In spite using both morphological and molecular data (Thomas et al. of the considerable progress made in understanding the molec- 2006; Cuenca and Asmussen 2007; Cuenca et al. 2008, 2009). ular basis of flower development in monocots, attention has The key synapomorphy that defines the tribe is the arrange- tended to focus on the Poaceae (Poales), since the latter group ment of flowers in distinctive clusters called acervuli (Cuenca contains several model species such as maize and rice that are et al. 2009). These structures are considered to be a reversed easily accessible to genetic studies and also have major economic cincinnus adnate to the rachilla (Uhl and Moore 1978; Uhl importance. Among the other monocot orders, the largely trop- and Dransfield 1987; Ortega and Stauffer 2011). ical palm family (Arecaceae), which forms the order Arecales on The Chamaedoreeae are composed of five genera (Hender- its own, is of great interest as a case study to investigate the evo- son et al. 1995; Dransfield et al. 2008), two of which are dioe- lution of reproductive morphology and sexual differentiation. It cious: Chamaedorea Willd., the richest
Recommended publications
  • Arecoideae: Chamaedoreeae)
    Structural biology and evolution in the monotypic Amazonian palm Wendlandiella (Arecoideae: Chamaedoreeae) Fred W. Stauffer, Joan Eychenne, Nesly Ortega & Henrik Balslev Abstract STAUFFER, F.W., J. EYCHENNE, N. ORTEGA & H. BALSLEV (2019). Structural biology and evolution in the monotypic Amazonian palm Wendlandiella (Arecoideae: Chamaedoreeae) Candollea 74: 15 – 30. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2019v741a3 The structural biology is here, for the first time, described in the Amazonian palm genus Wendlandiella Dammer, a poorly known and monotypic member of the early divergent tribe Chamaedoreeae Drude (Arecoideae). Wendlandiella gracilis Dammer includes three varieties: var. gracilis, var. polyclada (Burret) A.J. Hend., and var. simplicifrons (Burret) A.J. Hend. In contrast to the overwhelmingly monoecious condition in this subfamily, Wendlandiella together with the species-rich genus Chamaedorea Willd., presents a dioecious reproductive syndrome. The terrestrial root system, the leaves and the stems of Wendlandiella display a relatively simple architecture and vegetative multiplication observed in wild populations may be regarded as an important mechanism of reproduction. Flowers in Wendlandiella are arranged in a complex floral cluster known as acervulus, clearly deviating from the floral triad characterizing most other members of the subfamily. Our study describes the structure of the acervulus in inflorescences of both sexes. The lack of a nectariferous epithelium in the gynoecium and the pistillode suggests that Wendlandiella is wind pollinated, which is a rare pollination mechanism in palms. Wendlandiella is proposed as an interesting model to test the different evolutionary pathways to dioecy in palms. Keywords ARECACEAE – PALMAE – Wendlandiella – Morphology – Anatomy – Dioecy – Neotropics Addresses of the authors: FWS: Conservatoire et Jardin botaniques de la Ville de Genève et Laboratoire de systématique végétale et biodiversité de l’Université de Genève, C.P.
    [Show full text]
  • V20n3p119-120
    t9761 PALM BRIEFS 119 PALM BRIEFS and again in January, 1970, aI the same or different localities within the same A NomenclqlurqlNole on district. The collector also observed Hyophorbe female and male inflorescences on the A monographic study of the genus same group of plants at dif{erent times. Hyophorbe is in preparation,but one o{ From the detailed description, the palm the conclusionsrequires advance publi- appears to be monocarpic, a character- cation in order to provide a name that istic of most of the caryotoid group of can be used in Hortus Third, and,in an- palms"(Moore, 1973). In monocarpic other publication. It has become clear habit, inflorescences develop basipetally that the genus Mascarena is not ade- from a terminal in{lorescence which is quately separated fuom Hyophorbe and generally a female, followed by axillary that the palm commonly cultivated as male inflorescences. This monocarpic Mascarena lagenicaulis must be trans- habit is seen in all three genera {erred to the older genus. Study has (Arenga, Caryota, Wallichia) of the shown that MascarenareuaughaniiL. H. caryotoid group. Arenga Labill. has Bailey is not different [rom M. lageni- imparipinnate or undivided leaves,often caulis, and in combining the two I am aggregate inflorescences, distinct sepals taking up the epithet that is descriptive and petals in staminate flowers, numer- and not likely to be confused with Hyo- ous stamens, trilocular ovary with 2-3 phorbe uaughanii. fertile locules, and homogeneousendo- The five species are: sperm. Caryota L. has bipinnate leaves, solitary inflorescences,reduction of fer- Hyophorbe amaricaulis Martius tile locules to I-2, and development of Hyophorbe indica Gaertner J.
    [Show full text]
  • WRA Species Report
    Family: Arecaceae Taxon: Hyophorbe verschaffeltii Synonym: Mascarena vershaffeltii L. H. Bailey Common Name: Spindle palm Palmiste Marron Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -5 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n
    [Show full text]
  • Coleoptera: Chrysomelidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 9-2-2011 Noteworthy Records of Hispines from Belize (Coleoptera: Chrysomelidae) R. F. C. Naczi The New York Botanical Garden, [email protected] C. L. Staines National Museum of Natural History, Smithsonian Institution, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Naczi, R. F. C. and Staines, C. L., "Noteworthy Records of Hispines from Belize (Coleoptera: Chrysomelidae)" (2011). Insecta Mundi. 702. https://digitalcommons.unl.edu/insectamundi/702 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0190 Noteworthy Records of Hispines from Belize (Coleoptera: Chrysomelidae) R. F. C. Naczi The New York Botanical Garden 2900 Southern Blvd. Bronx, NY 10458-5126, U.S.A. C. L. Staines Department of Entomology, MRC 187 National Museum of Natural History, Smithsonian Institution Washington, DC 20013-7012, U.S.A. Date of Issue: September 2, 2011 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL R. F. C. Naczi and C. L. Staines Noteworthy Records of Hispines from Belize (Coleoptera: Chrysomelidae) Insecta Mundi 0190: 1-6 Published in 2011 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod.
    [Show full text]
  • ISSN: 0975-8585 March – April 2016 RJPBCS 7(2) Page No
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Hyophorbe verschaffeltii DNA Profiling, Chemical Composition of the Lipophilic Fraction, Antimicrobial, Anti-Inflammatory and Cytotoxic Activities. Shaza H Aly1, Mohamed R Elgindi3,4, Abd El-Nassar B Singab2, and Ibrahim I Mahmoud4,5. 1Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt 2Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt 3Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University,Cairo, Egypt. 4Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt. 5Department of Pharmacognosy, Faculty of Pharmacy, Al Ahram Canadian University, Cairo, Egypt. ABSTRACT To authenticate Hyophorbe verschaffeltii with investigation of lipoidal matters and biological activities. DNA profiling was carried out by random amplified polymorphic DNA-PCR. Petroleum ether extract was investigated for lipoidal matters using GC-MS. Anti-inflammatory activity was assayed in vivo by Carrageenan-induced rat hind paw edema technique, Antimicrobial screening was done by a standard agar well diffusion method and cytotoxicity assay was measured against MCF-7 cells using the MTT Cell Viability Assay. The ten primers used for RAPD-PCR analysis produced totally 73 amplified DNA fragments and primer OPA-12 was the best sequence for dominating Hyophorbe verschaffeltii producing the highest hits (10).The results of the lipoidal matter investigation revealed the presence of squalene (15.40%), phytol (4.10%), myristic acid (13.20%), undecanoic acid (11.87%) and pentadecanoic acid (11.24%). Aqueous methanol extract exhibited cytotoxicity activity at IC 50(323.6 μg/ml) against MCF-7 cells, anti-inflammatory activity and antimicrobial activity against Bacillus subtillus, Escherichia Coli, Pseudomonas Aeruginosa and Candida albicans.
    [Show full text]
  • The Cultivation and Management of Chamaedorea Palms in The
    THE CULTIVATION AND MANAGEMENT OF CHAMAEDOREA PALMS IN THE UNDERSTORY OF A TROPICAL RAIN FOREST IN MEXICO A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANICAL SCIENCES (Botany-Ecology, Evolution, and Conservation Biology) AUGUST 2004 By Parker Clayton Trauemicht Thesis Committee: Tamara Ticktin, Chairperson Donald R. Drake Travis Idol ACKNOWLEDGMENTS As for inspiration, the foundation ofwho I am and my love for science, nature and life - all credit goes to Rindy Trauernicht. The first set ofthanks goes to my family, who has so often provided the means and the encouragement to pursue the many opportunities that have presented themselves over the course ofmy life so far. Many thanks also to my friends here in Hawai'i and elsewhere for their support and healthy amount ofdistraction. I must thank my advisor, Tamara Ticktin, for tracking me down to let me know that she wanted me to be her student. I am truly grateful for her invaluable contribution to my education as both teacher and friend. The other members ofmy committee, Don Drake and Travis Idol, provided helpful criticism and feedback concerning methodology, analyses and the eventual write-up ofthis thesis. Thanks also to Mark Merlin for throwing around ideas. Also, mahalo to Holli and Gerry in the Botany office-the entire department would fall apart without them. Thanks to all ofthe people who helped me in Mexico. First, gracias to the folks at El Proyecto Sierra de Santa Marta in Xalapa, Veracruz.
    [Show full text]
  • A Comparison of Hispine Beetles (Coleoptera: Chrysomelidae) Associated with Three Orders of Monocot Host Plants in Lowland Panama
    International Journal of Tropical Insect Science Vol. 27, No. 3/4, pp. 159-171, 2008 DOI: 10.1017/S1742758407864071 © icipe 2008 A comparison of hispine beetles (Coleoptera: Chrysomelidae) associated with three orders of monocot host plants in lowland Panama Christophe Meskens1*, Donald Windsor2 and Thierry Hance1 1 Unite d'Ecologie et de Biogeographie, Biodiversity Research Centre, Universite catholique de Louvain, 4-5, Place Croix du Sud, Louvain-la- Neuve 1348, Belgium: ^Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama (Accepted 17 October 2007) Abstract. The feeding traces in fossil ginger leaves and the conserved phylogenetic relationships seen today in certain clades of hispine beetles on their monocot hosts point towards a long and intimate plant-insect evolutionary relationship. Studies in the 1970s and 1980s documented the rich fauna of rolled-leaf hispine beetles and their association with the Neotropical monocot family Heliconiaceae in Central America. In this report, the taxonomic breadth of these early studies is expanded to include species in the families, Marantaceae, Poaceae, Arecaceae and Costaceae, all with species occurring sympatrically with the Heliconiaceae in lowland Panama. Additionally, the analysis is widened to include open-leaf scraping and internal leaf-mining clades of hispoid Cassidinae. The censuses add more than 5080 Cassidinae herbivore occurrence records on both open and unfurled new leaf rolls of 4600 individual plants. Cluster analysis reveals that while many Hispinae species tend to group with plant species in only one of the three monocot orders, 9 of 16 Hispinae species on Zingiberales hosts were recorded in substantial numbers on both the Heliconiaceae and the Marantaceae, indicating an underlying pattern of feeding flexibility at the host plant family level.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]
  • Wendland's Palms
    Wendland’s Palms Hermann Wendland (1825 – 1903) of Herrenhausen Gardens, Hannover: his contribution to the taxonomy and horticulture of the palms ( Arecaceae ) John Leslie Dowe Published by the Botanic Garden and Botanical Museum Berlin as Englera 36 Serial publication of the Botanic Garden and Botanical Museum Berlin November 2019 Englera is an international monographic series published at irregular intervals by the Botanic Garden and Botanical Museum Berlin (BGBM), Freie Universität Berlin. The scope of Englera is original peer-reviewed material from the entire fields of plant, algal and fungal taxonomy and systematics, also covering related fields such as floristics, plant geography and history of botany, provided that it is monographic in approach and of considerable volume. Editor: Nicholas J. Turland Production Editor: Michael Rodewald Printing and bookbinding: Laserline Druckzentrum Berlin KG Englera online access: Previous volumes at least three years old are available through JSTOR: https://www.jstor.org/journal/englera Englera homepage: https://www.bgbm.org/englera Submission of manuscripts: Before submitting a manuscript please contact Nicholas J. Turland, Editor of Englera, Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Königin- Luise-Str. 6 – 8, 14195 Berlin, Germany; e-mail: [email protected] Subscription: Verlagsauslieferung Soyka, Goerzallee 299, 14167 Berlin, Germany; e-mail: kontakt@ soyka-berlin.de; https://shop.soyka-berlin.de/bgbm-press Exchange: BGBM Press, Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Königin-Luise-Str. 6 – 8, 14195 Berlin, Germany; e-mail: [email protected] © 2019 Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin All rights (including translations into other languages) reserved.
    [Show full text]
  • Palmtraits 1.0, a Species-Level Functional Trait Database of Palms Worldwide
    UvA-DARE (Digital Academic Repository) PalmTraits 1.0, a species-level functional trait database of palms worldwide Kissling, W.D.; Balslev, H.; Baker, W.J.; Dransfield, J.; Göldel, B.; Lim, J.Y.; Onstein, R.E.; Svenning, J.-C. DOI 10.1038/s41597-019-0189-0 Publication date 2019 Document Version Final published version Published in Scientific Data License CC BY Link to publication Citation for published version (APA): Kissling, W. D., Balslev, H., Baker, W. J., Dransfield, J., Göldel, B., Lim, J. Y., Onstein, R. E., & Svenning, J-C. (2019). PalmTraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 6, [178 ]. https://doi.org/10.1038/s41597-019-0189-0 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 www.nature.com/scientificdata OPEN PalmTraits 1.0, a species-level Data Descriptor functional trait database of palms worldwide Received: 3 June 2019 W.
    [Show full text]
  • 1 Ornamental Palms
    1 Ornamental Palms: Biology and Horticulture T.K. Broschat and M.L. Elliott Fort Lauderdale Research and Education Center University of Florida, Davie, FL 33314, USA D.R. Hodel University of California Cooperative Extension Alhambra, CA 91801, USA ABSTRACT Ornamental palms are important components of tropical, subtropical, and even warm temperate climate landscapes. In colder climates, they are important interiorscape plants and are often a focal point in malls, businesses, and other public areas. As arborescent monocots, palms have a unique morphology and this greatly influences their cultural requirements. Ornamental palms are over- whelmingly seed propagated, with seeds of most species germinating slowly and being intolerant of prolonged storage or cold temperatures. They generally do not have dormancy requirements, but do require high temperatures (30–35°C) for optimum germination. Palms are usually grown in containers prior to trans- planting into a field nursery or landscape. Because of their adventitious root system, large field-grown specimen palms can easily be transplanted. In the landscape, palm health and quality are greatly affected by nutritional deficien- cies, which can reduce their aesthetic value, growth rate, or even cause death. Palm life canCOPYRIGHTED also be shortened by a number of MATERIAL diseases or insect pests, some of which are lethal, have no controls, or have wide host ranges. With the increasing use of palms in the landscape, pathogens and insect pests have moved with the Horticultural Reviews, Volume 42, First Edition. Edited by Jules Janick. 2014 Wiley-Blackwell. Published 2014 by John Wiley & Sons, Inc. 1 2 T.K. BROSCHAT, D.R. HODEL, AND M.L.
    [Show full text]
  • Instituto Nacional De Pesquisas Da Amazônia – INPA
    Instituto Nacional de Pesquisas da Amazônia – INPA Programa de Pós-Graduação em Ecologia Reprodução, distribuição e padrões de co-ocorrência em uma comunidade de palmeiras na Amazônia central: Uma abordagem teórica e experimental Cintia Gomes de Freitas Manaus, Amazonas Fevereiro, 2012 Cintia Gomes de Freitas Reprodução, distribuição e padrões de co-ocorrência em uma comunidade de palmeiras na Amazônia central: Uma abordagem teórica e experimental Orientador: Renato Cintra, Dr. Co-orientadora: Flávia Regina Capellotto Costa, Dra. Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Doutor em Biologia (Ecologia). Manaus, Amazonas Fevereiro, 2012 ii Bancas examinadoras: Banca examinadora do trabalho escrito: Avaliador Instituição de origem Parecer Carolina Volkmer de Castilho Embrapa-RR Aprovado Kyle E. Harms Louisiana State University- Approved without or USA minimal changes Anders S. Barfod Aarhus University-Dinamarca Approved with changes Mauro Galetti UNESP-RC Aprovada Aldicir Scariot Embrapa-DF Aprovado Comissão examinadora de Defesa Pública: Avaliador Instituição de origem Parecer Bruce Walker Nelson INPA Aprovado José Luis C. Camargo INPA-PDBFF Aprovado Ricardo Marenco INPA Aprovado iii F866 Freitas, Cíntia Gomes de Reprodução, distribuição e padrões de co-ocorrência em uma comunidade de palmeiras na Amazônia Central: Uma abordagem teórica e experimental / Cíntia Gomes de Freitas.--- Manaus : [s.n.], 2012. 168 f. : il. color. Tese (doutorado) --- INPA, Manaus, 2012 Orientador : Renato Cintra Co-orientador : Flávia Regina Capelloto Costa Área de concentração : Ecologia 1. Arecaceae. 2. Distribuição de espécies. 3. Frutificação. 4. Filogenia. 5. Floresta de terra firme – Amazônia Central. I. Título. CDD 19. ed. 574.5247 Sinopse: A fim de contribuir no entendimento de grandes questões ecológicas que abordam comunidades e fatores responsáveis pela distribuição das espécies, esse estudo usou como modelo as palmeiras.
    [Show full text]