Evaluating the Lettuce Metatranscriptome with Minion Sequencing for Future Spaceflight Food Production Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Profiling of the Human Gut Microbiome Using Metatranscriptomic Approach
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH DOCTORAL THESIS DECEMBER 2019 XAVIER MARTÍNEZ SERRANO PROGRAMA DE DOCTORAT EN MEDICINA DEPARTAMENT DE MEDICINA FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH XAVIER MARTÍNEZ SERRANO PhD THESIS – Barcelona, December 2019 Director Tutor Author Dr. Chaysavanh Manichanh Dr. Victor Manuel Vargas Blasco Xavier Martínez Serrano Universitat Autònoma de Barcelona Dr. Chaysavanh Manichanh Principal Investigator – Microbiome Lab Department of Physiology and Physiopathology of the Digestive Tract Vall d’Hebron Institut de Recerca Certify that the thesis entitled “Functional profiling of the human gut microbiome using metatranscriptomic approach” submitted by Xavier Martínez Serrano, was carried out under her supervision and tutorship of Dr. Víctor Vargas Blasco, and authorize its presentation for the defense ahead of the corresponding tribunal. Barcelona, December 2019 “All sorts of computer errors are now turning up. You'd be surprised to know the number of doctors who claim they are treating pregnant men” I. Asimov “Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world.” L. -
Antibiotic Resistant Bacteria in Water Environments in Louisville, Kentucky
University of Louisville ThinkIR: The University of Louisville's Institutional Repository College of Arts & Sciences Senior Honors Theses College of Arts & Sciences 5-2018 Antibiotic resistant bacteria in water environments in Louisville, Kentucky. Amy Priest University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/honors Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Priest, Amy, "Antibiotic resistant bacteria in water environments in Louisville, Kentucky." (2018). College of Arts & Sciences Senior Honors Theses. Paper 173. Retrieved from https://ir.library.louisville.edu/honors/173 This Senior Honors Thesis is brought to you for free and open access by the College of Arts & Sciences at ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in College of Arts & Sciences Senior Honors Theses by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. Antibiotic Resistant Bacteria in Water Environments in Louisville, Kentucky: An Analysis of Common Genera and Community Diversity By Amy Priest Submitted in partial fulfillment of the requirements for Graduation summa cum laude and for Graduation with Honors from the Department of Biology University of Louisville May, 2018 1 Table of Contents Abstract .......................................................................................................................................... -
Metatranscriptomics to Characterize Respiratory Virome, Microbiome, and Host Response Directly from Clinical Samples
Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples Seesandra Rajagopala ( [email protected] ) Vanderbilt University Medical Center Nicole Bakhoum Vanderbilt University Medical Center Suman Pakala Vanderbilt University Medical Center Meghan Shilts Vanderbilt University Medical Center Christian Rosas-Salazar Vanderbilt University Medical Center Annie Mai Vanderbilt University Medical Center Helen Boone Vanderbilt University Medical Center Rendie McHenry Vanderbilt University Medical Center Shibu Yooseph University of Central Florida https://orcid.org/0000-0001-5581-5002 Natasha Halasa Vanderbilt University Medical Center Suman Das Vanderbilt University Medical Center https://orcid.org/0000-0003-2496-9724 Article Keywords: Metatranscriptomics, Virome, Microbiome, Next-Generation Sequencing (NGS), RNA-Seq, Acute Respiratory Infection (ARI), Respiratory Syncytial Virus (RSV), Coronavirus (CoV) Posted Date: October 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-77157/v1 Page 1/31 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/31 Abstract We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low-biomass clinical samples. Using nasal swab samples, we have demonstrated that this method captures the comprehensive RNA virome with sucient sequencing depth required to assemble complete genomes. We nd a surprisingly high-frequency of Respiratory Syncytial Virus (RSV) and Coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-infections in children with symptomatic RSV. In addition, we have characterized commensal and pathogenic bacteria, and fungi at the species-level. Functional analysis of bacterial transcripts revealed H. -
Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S Rdna Analysis by PCR-DGGE
Open Journal of Ecology, 2018, 8, 495-509 http://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Characterization of the Dominant Bacterial Communities Associated with Terrestrial Isopod Species Based on 16S rDNA Analysis by PCR-DGGE Delhoumi Majed, Zaabar Wahiba, Bouslama Mohamed Fadhel, Achouri Mohamed Sghaier* Laboratory of Bio-Ecology and Evolutionary Systematics, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia How to cite this paper: Majed, D., Wahi- Abstract ba, Z., Fadhel, B.M. and Sghaier, A.M. (2018) Characterization of the Dominant Bacterial From the marine environment, woodlice gradually colonized terrestrial areas Communities Associated with Terrestrial benefiting from the symbiotic relationship with the bacterial community that Isopod Species Based on 16S rDNA Analy- they host. Indeed, they constitute the only group of Oniscidea suborder that sis by PCR-DGGE. Open Journal of Ecolo- gy, 8, 495-509. has succeed to accomplish their lives in terrestrial even desert surfaces. Here- https://doi.org/10.4236/oje.2018.89030 in they play an important role in the dynamic of ecosystems and the decom- position of litter. So to enhance our understanding of the sea-land transition Received: January 30, 2018 and other process like decomposition and digestion of detritus, we studied Accepted: September 15, 2018 Published: September 18, 2018 the bacterial community associated with 11 specimens of terrestrial isopods belonging to six species using a Culture independent approach (DGGE). Copyright © 2018 by authors and Bands sequencing showed that the cosmopolitan species Porcellionides prui- Scientific Research Publishing Inc. nosus has the most microbial diversity. -
Ochrobactrum Rhizosphaerae Sp. Nov. and Ochrobactrum Thiophenivorans Sp
International Journal of Systematic and Evolutionary Microbiology (2008), 58, 1426–1431 DOI 10.1099/ijs.0.65407-0 Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment Peter Ka¨mpfer,1 Angela Sessitsch,2 Michael Schloter,3 Birgit Huber,4 Hans-Ju¨rgen Busse4 and Holger C. Scholz5 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Peter Ka¨mpfer Germany peter.kaempfer@umwelt. 2Austrian Research Centers GmbH, Department of Bioresources, A-2444 Seibersdorf, Austria uni-giessen.de 3Helmholtz Zentrum Mu¨nchen, German Research Center for Environmental Health, Terrestrial Ecogenetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany 4Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t Wien, A-1210 Wien, Austria 5Bundeswehr Institute of Microbiology, D-80937 Munich, Germany Two Gram-negative, rod-shaped, non-spore-forming bacteria, PR17T and DSM 7216T, isolated from the potato rhizosphere and an industrial environment, respectively, were studied for their taxonomic allocation. By rrs (16S rRNA) gene sequencing, these strains were shown to belong to the Alphaproteobacteria, most closely related to Ochrobactrum pseudogrignonense (98.4 and 99.3 % similarity to the type strain, respectively). Chemotaxonomic data (major ubiquinone Q-10; major polyamines spermidine, sym-homospermidine and putrescine; major polar lipids phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and the Ochrobactrum-specific unidentified aminolipid AL2; major fatty acids C18 : 1v7c and C19 : 0 cyclo v8c) supported the genus affiliation. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from all hitherto-described Ochrobactrum species. Hence, both isolates represent novel species of the genus Ochrobactrum, for which the names Ochrobactrum rhizosphaerae sp. -
Metagenomics and Metatranscriptomics
Metagenomics and Metatranscriptomics Jinyu Yang Bioinformatics and Mathematical Biosciences Lab July/15th/2016 Background Conventional sequencing begins with a culture of identical cells as a source of DNA Bottleneck Vast majority of microbial biodiversity had been missed by cultivation-based methods Large groups of microorganisms cannot be cultured and thus cannot be sequenced Bottleneck For example: 16S ribosomal RNA sequences 1. Relatively short 2. Often conserved within a species 3. Generally different between species Many 16S rRNA sequences have been found which do not belong to any known cultured species there are numerous non-isolated organisms Cultivation-based methods find < 1% of the bacterial and archaeal species in a sample Next-generation sequencing The price of DNA sequencing continues to fall All genes from all the members of the communities in environmental samples Metagenomics The term “Metagenomics” first appeared in 1998 Metagenomics: 1. genomic analysis of microbial DNA, which is extracted directly from communities in environmental samples 2. Alleviating the need for isolation and lab cultivation of individual species 3. Focus on microbial communities Metagenomics Taxonomic analysis (“who is out there?”) Assign each read to a taxonomy Functional analysis (“what are they doing?”) Map each read to a functional role/pathway Comparative analysis (“how do different samples compare?”) Level 1: sequence composition Level 2: taxonomic diversity Level 3: functional complement, etc. Metagenomics Metagenomics Metagenomics Microbial -
Data of Read Analyses for All 20 Fecal Samples of the Egyptian Mongoose
Supplementary Table S1 – Data of read analyses for all 20 fecal samples of the Egyptian mongoose Number of Good's No-target Chimeric reads ID at ID Total reads Low-quality amplicons Min length Average length Max length Valid reads coverage of amplicons amplicons the species library (%) level 383 2083 33 0 281 1302 1407.0 1442 1769 1722 99.72 466 2373 50 1 212 1310 1409.2 1478 2110 1882 99.53 467 1856 53 3 187 1308 1404.2 1453 1613 1555 99.19 516 2397 36 0 147 1316 1412.2 1476 2214 2161 99.10 460 2657 297 0 246 1302 1416.4 1485 2114 1169 98.77 463 2023 34 0 189 1339 1411.4 1561 1800 1677 99.44 471 2290 41 0 359 1325 1430.1 1490 1890 1833 97.57 502 2565 31 0 227 1315 1411.4 1481 2307 2240 99.31 509 2664 62 0 325 1316 1414.5 1463 2277 2073 99.56 674 2130 34 0 197 1311 1436.3 1463 1899 1095 99.21 396 2246 38 0 106 1332 1407.0 1462 2102 1953 99.05 399 2317 45 1 47 1323 1420.0 1465 2224 2120 98.65 462 2349 47 0 394 1312 1417.5 1478 1908 1794 99.27 501 2246 22 0 253 1328 1442.9 1491 1971 1949 99.04 519 2062 51 0 297 1323 1414.5 1534 1714 1632 99.71 636 2402 35 0 100 1313 1409.7 1478 2267 2206 99.07 388 2454 78 1 78 1326 1406.6 1464 2297 1929 99.26 504 2312 29 0 284 1335 1409.3 1446 1999 1945 99.60 505 2702 45 0 48 1331 1415.2 1475 2609 2497 99.46 508 2380 30 1 210 1329 1436.5 1478 2139 2133 99.02 1 Supplementary Table S2 – PERMANOVA test results of the microbial community of Egyptian mongoose comparison between female and male and between non-adult and adult. -
Culturable Aerobic and Facultative Bacteria from the Gut of the Polyphagic Dung Beetle Thorectes Lusitanicus
Insect Science (2015) 22, 178–190, DOI 10.1111/1744-7917.12094 ORIGINAL ARTICLE Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus Noemi Hernandez´ 1,Jose´ A. Escudero1, Alvaro´ San Millan´ 1, Bruno Gonzalez-Zorn´ 1, Jorge M. Lobo2,Jose´ R. Verdu´ 3 and Monica´ Suarez´ 1 1Department Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, Madrid, CP 28040, 2Department Biogeograf´ıa y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, JoseGuti´ errez´ Abascal 2, Madrid 28006, and 3I.U.I. CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante 03080, Spain Abstract Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle’s gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Pro- teobacteria, Firmicutes,andActinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. -
Trees, Fungi and Bacteria: Tripartite Metatranscriptomics of a Root Microbiome Responding to Soil Contamination E
Gonzalez et al. Microbiome (2018) 6:53 https://doi.org/10.1186/s40168-018-0432-5 RESEARCH Open Access Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination E. Gonzalez1,2, F. E. Pitre3,4, A. P. Pagé5, J. Marleau3, W. Guidi Nissim6, M. St-Arnaud3,4, M. Labrecque3,4, S. Joly3,4, E. Yergeau7 and N. J. B. Brereton3* Abstract Background: One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Methods: Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. ‘Fish Creek’ roots from trees pot grown in petroleum hydrocarbon- contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. Results: The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). -
Brucella Genomics: Macro and Micro Evolution
International Journal of Molecular Sciences Review Brucella Genomics: Macro and Micro Evolution Marcela Suárez-Esquivel 1 , Esteban Chaves-Olarte 2, Edgardo Moreno 1 and Caterina Guzmán-Verri 1,2,* 1 Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] (M.S.-E.); [email protected] (E.M.) 2 Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 1180, Costa Rica; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 11 October 2020; Published: 20 October 2020 Abstract: Brucella organisms are responsible for one of the most widespread bacterial zoonoses, named brucellosis. The disease affects several species of animals, including humans. One of the most intriguing aspects of the brucellae is that the various species show a ~97% similarity at the genome level. Still, the distinct Brucella species display different host preferences, zoonotic risk, and virulence. After 133 years of research, there are many aspects of the Brucella biology that remain poorly understood, such as host adaptation and virulence mechanisms. A strategy to understand these characteristics focuses on the relationship between the genomic diversity and host preference of the various Brucella species. Pseudogenization, genome reduction, single nucleotide polymorphism variation, number of tandem repeats, and mobile genetic elements are unveiled markers for host adaptation and virulence. Understanding the mechanisms of genome variability in the Brucella genus is relevant to comprehend the emergence of pathogens. Keywords: Brucella; brucellosis; genome reduction; pseudogene; IS711; SNPs 1. Introduction The Proteobacteria phylum represents the most extensive bacteria domain known. -
Fur Is the Master Regulator of the Extraintestinal Pathogenic
Downloaded from RESEARCH ARTICLE crossmark Fur Is the Master Regulator of the Extraintestinal Pathogenic mbio.asm.org Escherichia coli Response to Serum on August 3, 2015 - Published by Sagi Huja,a Yaara Oren,a Dvora Biran,a Susann Meyer,b Ulrich Dobrindt,c Joerg Bernhard,b Doerte Becher,b Michael Hecker,b Rotem Sorek,d Eliora Z. Rona,e Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israela; Institute for Microbiology, Ernst-Moritz-Arndt-Universität, Greifswald, Germanyb; Institute of Hygiene, Westfälische Wilhelms-Universität, Münster, Germanyc; Department of Molecular Genetics Weizmann Institute of Science, Rehovot, Israeld; MIGAL, Galilee Research Center, Kiriat Shmona, Israele ABSTRACT Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (coli- bacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nu- tritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes mbio.asm.org the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum—active and inactive—in- volved metabolic genes. -
The Genera Staphylococcus and Macrococcus
Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species.