Metatranscriptomics to Characterize Respiratory Virome, Microbiome, and Host Response Directly from Clinical Samples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota. -
Rapid Evolution of the Human Gut Virome
Rapid evolution of the human gut virome Samuel Minota, Alexandra Brysona, Christel Chehouda, Gary D. Wub, James D. Lewisb,c, and Frederic D. Bushmana,1 aDepartment of Microbiology, bDivision of Gastroenterology, and cCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved May 31, 2013 (received for review January 15, 2013) Humans are colonized by immense populations of viruses, which sequenced independently to allow estimation of within-time point metagenomic analysis shows are mostly unique to each individual. sample variation. Virus-like particles were extracted by sequential To investigate the origin and evolution of the human gut virome, filtration, Centricon ultrafiltration, nuclease treatment, and sol- we analyzed the viral community of one adult individual over 2.5 y vent extraction. Purified viral DNA was subjected to linear am- by extremely deep metagenomic sequencing (56 billion bases of plification using Φ29 DNA polymerase, after which quantitative purified viral sequence from 24 longitudinal fecal samples). After PCR showed that bacterial 16S sequences were reduced to less assembly, 478 well-determined contigs could be identified, which than 10 copies per nanogram of DNA, and human sequences were are inferred to correspond mostly to previously unstudied bacterio- reduced to below 0.1 copies per nanogram, the limit of detection. phage genomes. Fully 80% of these types persisted throughout the Paired-end reads then were acquired using Illumina HiSeq se- duration of the 2.5-y study, indicating long-term global stability. -
Madarak Polyomavírusainak És CRESS DNS Vírusainak Összehasonlító Genomvizsgálata
Állatorvostudományi Egyetem Aujeszky Aladár Elméleti Állatorvostudományok Doktori Program Madarak polyomavírusainak és CRESS DNS vírusainak összehasonlító genomvizsgálata PhD értekezés Szabóné Kaszab Eszter 2021 Témavezető és témabizottsági tagok: ………………………………… dr. Fehér Enikő Állatorvostudományi Kutatóintézet Új kórokozók témacsoport témavezető Készült 8 példányban. Ez a …… sz. példány ………………………………….. Szabóné Kaszab Eszter 2 Tartalomjegyzék 1. Rövidítések jegyzéke ............................................................................................... 5 2. Összefoglalás .......................................................................................................... 7 3. Summary ................................................................................................................. 8 4. Bevezetés ................................................................................................................ 9 5. Irodalmi áttekintés...................................................................................................10 5.1. A Circoviridae család jellemzése ...................................................................10 5.1.1. A Circovirus nemzetség ........................................................................12 5.1.2. A Cyclovirus nemzetség ........................................................................18 5.2. A CRESS DNS vírusok jellemzése ................................................................19 5.3. A polyomavírusok jellemzése ........................................................................22 -
Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses. -
Functional Profiling of the Human Gut Microbiome Using Metatranscriptomic Approach
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH DOCTORAL THESIS DECEMBER 2019 XAVIER MARTÍNEZ SERRANO PROGRAMA DE DOCTORAT EN MEDICINA DEPARTAMENT DE MEDICINA FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH XAVIER MARTÍNEZ SERRANO PhD THESIS – Barcelona, December 2019 Director Tutor Author Dr. Chaysavanh Manichanh Dr. Victor Manuel Vargas Blasco Xavier Martínez Serrano Universitat Autònoma de Barcelona Dr. Chaysavanh Manichanh Principal Investigator – Microbiome Lab Department of Physiology and Physiopathology of the Digestive Tract Vall d’Hebron Institut de Recerca Certify that the thesis entitled “Functional profiling of the human gut microbiome using metatranscriptomic approach” submitted by Xavier Martínez Serrano, was carried out under her supervision and tutorship of Dr. Víctor Vargas Blasco, and authorize its presentation for the defense ahead of the corresponding tribunal. Barcelona, December 2019 “All sorts of computer errors are now turning up. You'd be surprised to know the number of doctors who claim they are treating pregnant men” I. Asimov “Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world.” L. -
The Intra-Dependence of Viruses and the Holobiont
UC Merced UC Merced Previously Published Works Title The Intra-Dependence of Viruses and the Holobiont. Permalink https://escholarship.org/uc/item/41h7q2bs Author Grasis, Juris A Publication Date 2017 DOI 10.3389/fimmu.2017.01501 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PERSPECTIVE published: 09 November 2017 doi: 10.3389/fimmu.2017.01501 The Intra-Dependence of Viruses and the Holobiont Juris A. Grasis1,2* 1 Department of Biology, San Diego State University, San Diego, CA, United States, 2 School of Natural Sciences, University of California at Merced, Merced, CA, United States Animals live in symbiosis with the microorganisms surrounding them. This symbiosis is necessary for animal health, as a symbiotic breakdown can lead to a disease state. The functional symbiosis between the host, and associated prokaryotes, eukaryotes, and viruses in the context of an environment is the holobiont. Deciphering these holobiont associations has proven to be both difficult and controversial. In particular, holobiont association with viruses has been of debate even though these interactions have been occurring since cellular life began. The controversy stems from the idea that all viruses are parasitic, yet their associations can also be beneficial. To determine viral involvement within the holobiont, it is necessary to identify and elucidate the function of viral popula- Edited by: tions in symbiosis with the host. Viral metagenome analyses identify the communities of Larry J. Dishaw, eukaryotic and prokaryotic viruses that functionally associate within a holobiont. Similarly, University of South Florida St. Petersburg, United States analyses of the host in response to viral presence determine how these interactions are Reviewed by: maintained. -
New Viral Facets in Oral Diseases: the EBV Paradox
International Journal of Molecular Sciences Review New Viral Facets in Oral Diseases: The EBV Paradox Lilit Tonoyan 1,*, Séverine Vincent-Bugnas 1,2 , Charles-Vivien Olivieri 1 and Alain Doglio 1,3,* 1 Faculté de Chirurgie Dentaire, Université Côte d’Azur, EA 7354 MICORALIS (Microbiologie Orale, Immunothérapie et Santé), 06357 Nice, France; [email protected] (S.V.-B.); [email protected] (C.-V.O.) 2 Pôle Odontologie, Centre Hospitalier Universitaire de Nice, 06001 Nice, France 3 Unité de Thérapie Cellulaire et Génique, Centre Hospitalier Universitaire de Nice, 06103 Nice, France * Correspondence: [email protected] (L.T.); [email protected] (A.D.) Received: 3 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: The oral cavity contributes to overall health, psychosocial well-being and quality of human life. Oral inflammatory diseases represent a major global health problem with significant social and economic impact. The development of effective therapies, therefore, requires deeper insights into the etiopathogenesis of oral diseases. Epstein–Barr virus (EBV) infection results in a life-long persistence of the virus in the host and has been associated with numerous oral inflammatory diseases including oral lichen planus (OLP), periodontal disease and Sjogren’s syndrome (SS). There is considerable evidence that the EBV infection is a strong risk factor for the development and progression of these conditions, but is EBV a true pathogen? This long-standing EBV paradox yet needs to be solved. This review discusses novel viral aspects of the etiopathogenesis of non-tumorigenic diseases in the oral cavity, in particular, the contribution of EBV in OLP, periodontitis and SS, the tropism of EBV infection, the major players involved in the etiopathogenic mechanisms and emerging contribution of EBV-pathogenic bacteria bidirectional interaction. -
Viral Diversity in Tree Species
Universidade de Brasília Instituto de Ciências Biológicas Departamento de Fitopatologia Programa de Pós-Graduação em Biologia Microbiana Doctoral Thesis Viral diversity in tree species FLÁVIA MILENE BARROS NERY Brasília - DF, 2020 FLÁVIA MILENE BARROS NERY Viral diversity in tree species Thesis presented to the University of Brasília as a partial requirement for obtaining the title of Doctor in Microbiology by the Post - Graduate Program in Microbiology. Advisor Dra. Rita de Cássia Pereira Carvalho Co-advisor Dr. Fernando Lucas Melo BRASÍLIA, DF - BRAZIL FICHA CATALOGRÁFICA NERY, F.M.B Viral diversity in tree species Flávia Milene Barros Nery Brasília, 2025 Pages number: 126 Doctoral Thesis - Programa de Pós-Graduação em Biologia Microbiana, Universidade de Brasília, DF. I - Virus, tree species, metagenomics, High-throughput sequencing II - Universidade de Brasília, PPBM/ IB III - Viral diversity in tree species A minha mãe Ruth Ao meu noivo Neil Dedico Agradecimentos A Deus, gratidão por tudo e por ter me dado uma família e amigos que me amam e me apoiam em todas as minhas escolhas. Minha mãe Ruth e meu noivo Neil por todo o apoio e cuidado durante os momentos mais difíceis que enfrentei durante minha jornada. Aos meus irmãos André, Diego e meu sobrinho Bruno Kawai, gratidão. Aos meus amigos de longa data Rafaelle, Evanessa, Chênia, Tati, Leo, Suzi, Camilets, Ricardito, Jorgito e Diego, saudade da nossa amizade e dos bons tempos. Amo vocês com todo o meu coração! Minha orientadora e grande amiga Profa Rita de Cássia Pereira Carvalho, a quem escolhi e fui escolhida para amar e fazer parte da família. -
Freshwater Viral Metagenome Reveals Novel and Functional Phage-Borne
Moon et al. Microbiome (2020) 8:75 https://doi.org/10.1186/s40168-020-00863-4 RESEARCH Open Access Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes Kira Moon1, Jeong Ho Jeon2, Ilnam Kang1, Kwang Seung Park2, Kihyun Lee3, Chang-Jun Cha3, Sang Hee Lee2* and Jang-Cheon Cho1* Abstract Background: Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. Results: We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1×e−5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. -
Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date. -
Metagenomics and Metatranscriptomics
Metagenomics and Metatranscriptomics Jinyu Yang Bioinformatics and Mathematical Biosciences Lab July/15th/2016 Background Conventional sequencing begins with a culture of identical cells as a source of DNA Bottleneck Vast majority of microbial biodiversity had been missed by cultivation-based methods Large groups of microorganisms cannot be cultured and thus cannot be sequenced Bottleneck For example: 16S ribosomal RNA sequences 1. Relatively short 2. Often conserved within a species 3. Generally different between species Many 16S rRNA sequences have been found which do not belong to any known cultured species there are numerous non-isolated organisms Cultivation-based methods find < 1% of the bacterial and archaeal species in a sample Next-generation sequencing The price of DNA sequencing continues to fall All genes from all the members of the communities in environmental samples Metagenomics The term “Metagenomics” first appeared in 1998 Metagenomics: 1. genomic analysis of microbial DNA, which is extracted directly from communities in environmental samples 2. Alleviating the need for isolation and lab cultivation of individual species 3. Focus on microbial communities Metagenomics Taxonomic analysis (“who is out there?”) Assign each read to a taxonomy Functional analysis (“what are they doing?”) Map each read to a functional role/pathway Comparative analysis (“how do different samples compare?”) Level 1: sequence composition Level 2: taxonomic diversity Level 3: functional complement, etc. Metagenomics Metagenomics Metagenomics Microbial -
Trees, Fungi and Bacteria: Tripartite Metatranscriptomics of a Root Microbiome Responding to Soil Contamination E
Gonzalez et al. Microbiome (2018) 6:53 https://doi.org/10.1186/s40168-018-0432-5 RESEARCH Open Access Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination E. Gonzalez1,2, F. E. Pitre3,4, A. P. Pagé5, J. Marleau3, W. Guidi Nissim6, M. St-Arnaud3,4, M. Labrecque3,4, S. Joly3,4, E. Yergeau7 and N. J. B. Brereton3* Abstract Background: One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Methods: Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. ‘Fish Creek’ roots from trees pot grown in petroleum hydrocarbon- contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. Results: The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5).