Freshwater Viral Metagenome Reveals Novel and Functional Phage-Borne

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Viral Metagenome Reveals Novel and Functional Phage-Borne Moon et al. Microbiome (2020) 8:75 https://doi.org/10.1186/s40168-020-00863-4 RESEARCH Open Access Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes Kira Moon1, Jeong Ho Jeon2, Ilnam Kang1, Kwang Seung Park2, Kihyun Lee3, Chang-Jun Cha3, Sang Hee Lee2* and Jang-Cheon Cho1* Abstract Background: Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. Results: We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1×e−5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended- spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages. (Continued on next page) * Correspondence: [email protected]; [email protected] 2National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do 17058, Republic of Korea 1Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Moon et al. Microbiome (2020) 8:75 Page 2 of 15 (Continued from previous page) Conclusion: Our results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions. Keywords: Bacteriophage, Viral metagenome, Virome, Antibiotic resistance gene, Minimum inhibitory concentration, β-lactamase, River Background diverse environments based on PCR of viral DNA. How- Continually emerging antibiotic resistance of pathogenic ever, due to the limitations of PCR to detect unreported bacteria is a significant threat to global health. The or variances of ARGs, shotgun metagenomics that pro- World Health Organization (WHO) reported that from duce large amount of genomic information without a 2017 to 2018, approximately 1.1 million patients from confined scope has been used to screen for ARGs. 69 monitoring countries were infected with antibiotic re- The rapid development of viral metagenomics over the sistant pathogens [1], and this number is expected to last decade has led to several viral metagenome (virome) rise. Antibiotic resistant bacteria are a compelling health analyses of various environments, including oceans, issue because they make antibiotic treatments obsolete, freshwater, and clinical samples [10–14], revealing a even leading to the death of the patient. Bacteria natur- great number of novel viral sequences, including ARGs ally produce antimicrobial substances to disrupt neigh- [15]. Phage-associated ARGs were found in clinical vir- boring competitors, and accordingly, targeted bacteria omes [16, 17] where both bacteria and phages are heav- develop antibiotic resistance genes (ARGs) to defend ily exposed to antibiotics, and in marine and river against such mechanisms. Excessive use of antibiotics in viromes [18–20], indicating that ARGs are commonly medical practice has been implicated to accelerate devel- carried by phages in natural environments. Although a opment and dissemination of antibiotic resistance high proportion of virome reads was found to be encod- among bacterial populations in clinical and natural envi- ing ARGs, those genes remain uncertain whether they ronments. ARGs can be spread from one bacterial cell to were collected from phage genomes or bacterial genome another through horizontal gene transfer (HGT) [2]. remnants [21]. Contrast to ARG detection frequency in HGT of ARGs is commonly mediated by conjugation raw virome reads, only a few ARGs have been discovered that requires physical contact between bacterial cells via in the viral contigs assembled from virome reads [22]. pili or adhesins [3]. Conversely, transduction of ARGs Also, in a recent study, none of the four ARGs selected mediated by bacteriophages (phages) is rare but remains from viral contigs expressed antibiotic resistance when a significant dissemination route of ARGs. cloned into E. coli [21], leading to the conclusion that Although phages are the smallest and simplest bio- numbers of phage-carried ARGs might be overestimated. logical entities on earth, they have significant ecological Nevertheless, as ARGs continue to be detected in phage roles as bacterial population controllers through lytic in- isolates and viromes from diverse environments [18, 23– fections and contributors to bacterial gene diversifica- 26], whether phages are important reservoirs of ARGs or tion. During infection, phages randomly incorporate not is still debated. bacterial genome fragments into phage capsids or Because only a small proportion of phages are specu- genomes as they hijack the hosts’ genome replication lated to encode ARGs, phage-associated ARGs are often machinery. Consequently, those genome fragments can neglected in ARG researches, leaving them as unsuper- be transferred to subsequent bacterial host genomes as vised resistome to threat public health. Although occur- phages infect other host cells. Some phages are known rences are rare, it is evident that phages mediate ARG to have wide host range, a few with even of different transduction between bacterial cells [6] and contribute bacterial orders [4], thereby functioning as a bridge of to ARG dissemination [27]. Therefore, in our present genetic exchange between different bacterial popula- study, viral metagenomes were thoroughly studied to tions. Therefore, phage-associated ARGs are considered screen for distribution of ARGs within phage popula- especially significant due to their possibility for wide dis- tions, search for bona fide ARGs carried by phage ge- semination [5, 6]. Since phages are not directly influ- nomes, and verify phenotypes and functionality of the enced by antibiotics, the presence of ARGs is best phage-encoded ARGs. Using viromes constructed from evaluated by identifying nucleic acids in phage particles. urban rivers, we performed a functional assay of ARGs ARGs conferring resistance to lactamase [7], quinolone recovered from viral contigs and reported the first con- [8], and vancomycin [9] antibiotics were detected across vincing evidence of two new types of β-lactamases Moon et al. Microbiome (2020) 8:75 Page 3 of 15 derived from uncultured phages. Discovery of these pre- taxonomically assigned to bacterial genes, largely derived viously unreported ARGs in the freshwater virome sug- from Proteobacteria (Fig. S3). Along with phage- and gests environmental phages could be an important prophage-related functions, virome reads were also an- reservoir of unexplored ARGs. notated as diverse auxiliary metabolic genes (AMGs) [30], such as enzymes for carbohydrate metabolism, res- Results piration,
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • Rapid Evolution of the Human Gut Virome
    Rapid evolution of the human gut virome Samuel Minota, Alexandra Brysona, Christel Chehouda, Gary D. Wub, James D. Lewisb,c, and Frederic D. Bushmana,1 aDepartment of Microbiology, bDivision of Gastroenterology, and cCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved May 31, 2013 (received for review January 15, 2013) Humans are colonized by immense populations of viruses, which sequenced independently to allow estimation of within-time point metagenomic analysis shows are mostly unique to each individual. sample variation. Virus-like particles were extracted by sequential To investigate the origin and evolution of the human gut virome, filtration, Centricon ultrafiltration, nuclease treatment, and sol- we analyzed the viral community of one adult individual over 2.5 y vent extraction. Purified viral DNA was subjected to linear am- by extremely deep metagenomic sequencing (56 billion bases of plification using Φ29 DNA polymerase, after which quantitative purified viral sequence from 24 longitudinal fecal samples). After PCR showed that bacterial 16S sequences were reduced to less assembly, 478 well-determined contigs could be identified, which than 10 copies per nanogram of DNA, and human sequences were are inferred to correspond mostly to previously unstudied bacterio- reduced to below 0.1 copies per nanogram, the limit of detection. phage genomes. Fully 80% of these types persisted throughout the Paired-end reads then were acquired using Illumina HiSeq se- duration of the 2.5-y study, indicating long-term global stability.
    [Show full text]
  • Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
    Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses.
    [Show full text]
  • The Intra-Dependence of Viruses and the Holobiont
    UC Merced UC Merced Previously Published Works Title The Intra-Dependence of Viruses and the Holobiont. Permalink https://escholarship.org/uc/item/41h7q2bs Author Grasis, Juris A Publication Date 2017 DOI 10.3389/fimmu.2017.01501 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PERSPECTIVE published: 09 November 2017 doi: 10.3389/fimmu.2017.01501 The Intra-Dependence of Viruses and the Holobiont Juris A. Grasis1,2* 1 Department of Biology, San Diego State University, San Diego, CA, United States, 2 School of Natural Sciences, University of California at Merced, Merced, CA, United States Animals live in symbiosis with the microorganisms surrounding them. This symbiosis is necessary for animal health, as a symbiotic breakdown can lead to a disease state. The functional symbiosis between the host, and associated prokaryotes, eukaryotes, and viruses in the context of an environment is the holobiont. Deciphering these holobiont associations has proven to be both difficult and controversial. In particular, holobiont association with viruses has been of debate even though these interactions have been occurring since cellular life began. The controversy stems from the idea that all viruses are parasitic, yet their associations can also be beneficial. To determine viral involvement within the holobiont, it is necessary to identify and elucidate the function of viral popula- Edited by: tions in symbiosis with the host. Viral metagenome analyses identify the communities of Larry J. Dishaw, eukaryotic and prokaryotic viruses that functionally associate within a holobiont. Similarly, University of South Florida St. Petersburg, United States analyses of the host in response to viral presence determine how these interactions are Reviewed by: maintained.
    [Show full text]
  • Metatranscriptomics to Characterize Respiratory Virome, Microbiome, and Host Response Directly from Clinical Samples
    Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples Seesandra Rajagopala ( [email protected] ) Vanderbilt University Medical Center Nicole Bakhoum Vanderbilt University Medical Center Suman Pakala Vanderbilt University Medical Center Meghan Shilts Vanderbilt University Medical Center Christian Rosas-Salazar Vanderbilt University Medical Center Annie Mai Vanderbilt University Medical Center Helen Boone Vanderbilt University Medical Center Rendie McHenry Vanderbilt University Medical Center Shibu Yooseph University of Central Florida https://orcid.org/0000-0001-5581-5002 Natasha Halasa Vanderbilt University Medical Center Suman Das Vanderbilt University Medical Center https://orcid.org/0000-0003-2496-9724 Article Keywords: Metatranscriptomics, Virome, Microbiome, Next-Generation Sequencing (NGS), RNA-Seq, Acute Respiratory Infection (ARI), Respiratory Syncytial Virus (RSV), Coronavirus (CoV) Posted Date: October 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-77157/v1 Page 1/31 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/31 Abstract We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low-biomass clinical samples. Using nasal swab samples, we have demonstrated that this method captures the comprehensive RNA virome with sucient sequencing depth required to assemble complete genomes. We nd a surprisingly high-frequency of Respiratory Syncytial Virus (RSV) and Coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-infections in children with symptomatic RSV. In addition, we have characterized commensal and pathogenic bacteria, and fungi at the species-level. Functional analysis of bacterial transcripts revealed H.
    [Show full text]
  • Microbes and Metagenomics in Human Health an Overview of Recent Publications Featuring Illumina® Technology TABLE of CONTENTS
    Microbes and Metagenomics in Human Health An overview of recent publications featuring Illumina® technology TABLE OF CONTENTS 4 Introduction 5 Human Microbiome Gut Microbiome Gut Microbiome and Disease Inflammatory Bowel Disease (IBD) Metabolic Diseases: Diabetes and Obesity Obesity Oral Microbiome Other Human Biomes 25 Viromes and Human Health Viral Populations Viral Zoonotic Reservoirs DNA Viruses RNA Viruses Human Viral Pathogens Phages Virus Vaccine Development 44 Microbial Pathogenesis Important Microorganisms in Human Health Antimicrobial Resistance Bacterial Vaccines 54 Microbial Populations Amplicon Sequencing 16S: Ribosomal RNA Metagenome Sequencing: Whole-Genome Shotgun Metagenomics Eukaryotes Single-Cell Sequencing (SCS) Plasmidome Transcriptome Sequencing 63 Glossary of Terms 64 Bibliography This document highlights recent publications that demonstrate the use of Illumina technologies in immunology research. To learn more about the platforms and assays cited, visit www.illumina.com. An overview of recent publications featuring Illumina technology 3 INTRODUCTION The study of microbes in human health traditionally focused on identifying and 1. Roca I., Akova M., Baquero F., Carlet J., treating pathogens in patients, usually with antibiotics. The rise of antibiotic Cavaleri M., et al. (2015) The global threat of resistance and an increasingly dense—and mobile—global population is forcing a antimicrobial resistance: science for interven- tion. New Microbes New Infect 6: 22-29 1, 2, 3 change in that paradigm. Improvements in high-throughput sequencing, also 2. Shallcross L. J., Howard S. J., Fowler T. and called next-generation sequencing (NGS), allow a holistic approach to managing Davies S. C. (2015) Tackling the threat of anti- microbial resistance: from policy to sustainable microbes in human health.
    [Show full text]
  • Viral Metagenomics in the Clinical Realm: Lessons Learned from a Swiss-Wide Ring Trial
    G C A T T A C G G C A T genes Article Viral Metagenomics in the Clinical Realm: Lessons Learned from a Swiss-Wide Ring Trial 1, 2, 2 2, Thomas Junier *, Michael Huber * , Stefan Schmutz , Verena Kufner y, 2, 3, 3, 4, Osvaldo Zagordi y, Stefan Neuenschwander y, Alban Ramette y , Jakub Kubacki y , 4, 5, 6, 6, Claudia Bachofen y, Weihong Qi y, Florian Laubscher y, Samuel Cordey y , 6, 7, 8 1,9 8, Laurent Kaiser y, Christian Beuret y, Valérie Barbié , Jacques Fellay and Aitana Lebrand * 1 Global Health Institute, Swiss Federal Institute of Technology (ETH Lausanne) & SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 2 Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland 3 Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland 4 Institute of Virology, VetSuisse Faculty, University of Zurich, 8057 Zurich, Switzerland 5 Functional Genomics Center Zurich, Swiss Federal Institute of Technology (ETH Zurich) & University of Zurich, 8057 Zurich, Switzerland 6 Laboratory of Virology, University Hospitals of Geneva, 1205 Geneva, Switzerland; University of Geneva Medical School, 1206 Geneva, Switzerland 7 Biology Department, Spiez Laboratory, 3700 Spiez, Switzerland 8 Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, 1202 Geneva, Switzerland 9 Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland * Correspondence: [email protected] (T.J.); [email protected] (M.H.); [email protected] (A.L.) These authors contributed equally. y Received: 30 July 2019; Accepted: 24 August 2019; Published: 28 August 2019 Abstract: Shotgun metagenomics using next generation sequencing (NGS) is a promising technique to analyze both DNA and RNA microbial material from patient samples.
    [Show full text]
  • Long-Read Viral Metagenomics Enables Capture of Abundant and Microdiverse Viral Populations and Their Niche-Defining Genomic Islands
    bioRxiv preprint doi: https://doi.org/10.1101/345041; this version posted November 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Long-read viral metagenomics enables capture of abundant and microdiverse viral populations and their niche-defining genomic islands Authors Joanna Warwick-Dugdale1,2, Natalie Solonenko3, Karen Moore2, Lauren Chittick3, Ann C. Gregory3, Michael J. Allen1,2, Matthew B. Sullivan3,4, Ben Temperton2. 1. Plymouth Marine Laboratory, Plymouth, UK 2. School of Biosciences, University of Exeter, Exeter, UK. 3. Department of Microbiology, and 4 Civil, Environmental and Geodetic Engineering, The Ohio State University, Ohio, USA. Corresponding Author: Ben Temperton Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK email: [email protected] Abstract Marine viruses impact global biogeochemical cycles via their influence on host community structure and function, yet our understanding of viral ecology is constrained by limitations in culturing of important hosts and the lack of a ‘universal’ gene to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution. However, short-read assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Assembly across genomic islands which likely contain niche-defining genes that drive ecological speciation is also challenging. While such populations and features are successfully captured by single-virus genomics and fosmid-based approaches, both techniques require considerable cost and technical expertise.
    [Show full text]
  • The Altered Gut Virome Community in Rhesus Monkeys Is Correlated With
    Li et al. Virology Journal (2019) 16:105 https://doi.org/10.1186/s12985-019-1211-z RESEARCH Open Access The altered gut virome community in rhesus monkeys is correlated with the gut bacterial microbiome and associated metabolites Heng Li1,2†, Hongzhe Li1,2†, Jingjing Wang1,2, Lei Guo1,2, Haitao Fan1,2, Huiwen Zheng1,2, Zening Yang1,2, Xing Huang1,2, Manman Chu1,2, Fengmei Yang1, Zhanlong He1, Nan Li1,2, Jinxi Yang1,2, Qiongwen Wu1,2, Haijing Shi1,2* and Longding Liu1,2* Abstract Background: The gut microbiome is closely associated with the health of the host; although the interaction between the bacterial microbiome and the whole virome has rarely been studied, it is likely of medical importance. Examination of the interactions between the gut bacterial microbiome and virome of rhesus monkey would significantly contribute to revealing the gut microbiome composition. Methods: Here, we conducted a metagenomic analysis of the gut microbiome of rhesus monkeys in a longitudinal cohort treated with an antibiotic cocktail, and we documented the interactions between the bacterial microbiome and virome. The depletion of viral populations was confirmed at the species level by real-time PCR. We also detected changes in the gut metabolome by GC-MS and LC-MS. Results: A majority of bacteria were depleted after treatment with antibiotics, and the Shannon diversity index decreased from 2.95 to 0.22. Furthermore, the abundance-based coverage estimator (ACE) decreased from 104.47 to 33.84, and the abundance of eukaryotic viruses also changed substantially. In the annotation, 6 families of DNA viruses and 1 bacteriophage family were present in the normal monkeys but absent after gut bacterial microbiome depletion.
    [Show full text]
  • Viromes Outperform Total Metagenomes in Revealing the Spatiotemporal Patterns of Agricultural Soil Viral Communities
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.237214; this version posted August 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Viromes outperform total metagenomes in revealing the spatiotemporal patterns 2 of agricultural soil viral communities 3 Christian Santos-Medellin1, Laura A. Zinke1, Anneliek M. ter Horst1, Danielle L. Gelardi2, 4 Sanjai J. Parikh2, and Joanne B. Emerson1,3 5 6 1Department of Plant Pathology, University of California, Davis, One Shields Avenue, 7 Davis, California, USA, 95616 8 2Department of Land, Air and Water Resources, University of California, Davis, One 9 Shields Avenue, Davis, California, USA, 95616 10 3Genome Center, University of California, Davis, One Shields Avenue, Davis, California, 11 USA, 95616 12 13 Corresponding author information: 14 Joanne B. Emerson 15 Address: One Shields Ave, Davis, California, USA, 95616 16 Email: [email protected] 17 Phone: 530-752-9848 18 19 Running title: “Spatiotemporal trends of soil viral communities” 20 21 Competing interests: Authors declare no conflict of interest 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.237214; this version posted August 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • A New Comprehensive Catalog of the Human Virome Reveals Hidden Associations with 2 Chronic Diseases 3 4 Michael J
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.363820; this version posted November 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 A New Comprehensive Catalog of the Human Virome Reveals Hidden Associations with 2 Chronic Diseases 3 4 Michael J. Tisza and Christopher B. Buck* 5 6 Affiliation 7 Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263 8 9 *Corresponding author: [email protected] 10 11 Abstract 12 While there have been remarkable strides in microbiome research, the viral component of the 13 microbiome has generally presented a more challenging target than the bacteriome. This is 14 despite the fact that many thousands of shotgun sequencing runs from human metagenomic 15 samples exist in public databases and all of them encompass large amounts of viral sequences. 16 The lack of a comprehensive database for human-associated viruses, along with inadequate 17 methods for high-throughput identification of highly divergent viruses in metagenomic data, 18 has historically stymied efforts to characterize virus sequences in a comprehensive way. In this 19 study, a new high-specificity and high-sensitivity bioinformatic tool, Cenote-Taker 2, was 20 applied to thousands of human metagenome datasets, uncovering over 50,000 unique virus 21 operational taxonomic units. Publicly available case-control studies were re-analyzed, and over 22 1,700 strong virus-disease associations were found.
    [Show full text]
  • Long-Read Viral Metagenomics Captures Abundant and Microdiverse Viral Populations and Their Niche-Defining Genomic Islands
    Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands Joanna Warwick-Dugdale1,2, Natalie Solonenko3, Karen Moore2, Lauren Chittick3, Ann C. Gregory3, Michael J. Allen1,2, Matthew B. Sullivan3,4 and Ben Temperton2 1 Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom 2 School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom 3 Department of Microbiology, Ohio State University, Columbus, OH, United States of America 4 Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America ABSTRACT Marine viruses impact global biogeochemical cycles via their influence on host com- munity structure and function, yet our understanding of viral ecology is constrained by limitations in host culturing and a lack of reference genomes and `universal' gene markers to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution, but their assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Such features also challenge assembly across genomic islands containing niche-defining genes that drive ecological speciation. These populations and features may be successfully captured by single-virus genomics and fosmid-based approaches, at least in abundant taxa, but at considerable cost and tech- nical expertise. Here we established a low-cost, low-input, high throughput alternative sequencing and informatics workflow to improve viral metagenomic assemblies using Submitted 15 November 2018 Accepted 14 March 2019 short-read and long-read technology.
    [Show full text]