The Gut Virome: the ‘Missing Link’ Between 2019, Vol

Total Page:16

File Type:pdf, Size:1020Kb

The Gut Virome: the ‘Missing Link’ Between 2019, Vol TAG0010.1177/1756284819836620Therapeutic Advances in GastroenterologyI Mukhopadhya, JP Segal 836620review-article2019View2019 metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Therapeutic Advances in Gastroenterology Review Ther Adv Gastroenterol The gut virome: the ‘missing link’ between 2019, Vol. 12: 1–17 DOI:https://doi.org/10.1177/1756284819836620 10.1177/ gut bacteria and host immunity? 1756284819836620https://doi.org/10.1177/1756284819836620 © The Author(s), 2019. Article reuse guidelines: Indrani Mukhopadhya, Jonathan P. Segal, Simon R. Carding, Ailsa L. Hart sagepub.com/journals- and Georgina L. Hold permissions Abstract: The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease. Keywords: gut virome, gut microbiota, inflammatory bowel disease, host:microbiota interactions, microbial therapeutics, microbial dynamics Received: 5 January 2019; revised manuscript accepted: 14 February 2019. Correspondence to: Georgina L. Hold Microbiome Research Centre, St George & Key points • Further research into the interconnectivity Sutherland Clinical School, • The human intestinal microbiome repre- of the virome with other elements of the University of New South Wales, Sydney, NSW 2217, sents one of the most complex ecosystems microbiome is essential to fully define the Australia on Earth and has taken millions of years to role of the gut virome in human health. georgina.hold@unsw. coevolve. edu.au Indrani Mukhopadhya • DNA and RNA viruses that collectively Gastrointestinal Research make up the intestinal virome outnumber Introduction Group, Division of Applied Medicine, University of bacterial cells by as much as 10:1, and The human intestinal microbiota comprising bac- Aberdeen, Foresterhill, include eukaryotic viruses which infect teria, viruses, fungi, multicellular parasites and Aberdeen, UK Gut Health Group, The eukaryotic cells, endogenous retroviruses, archaea represents one of the most complex eco- Rowett Institute, University bacterial viruses (i.e. bacteriophages) and systems on Earth. It has coevolved over millions of Aberdeen, Foresterhill, archaeal viruses that infect archaea. of years to help shape and influence human devel- Aberdeen, UK Jonathan P. Segal 1 • Diet is an important and constant environ- opment, and in particular immune defences. Ailsa L. Hart mental and lifestyle factor that can influ- The DNA and RNA viruses that collectively make St. Mark’s Hospital, Watford Road, Harrow, UK ence the gut microbiome, including its viral up the intestinal virome are at least equivalent in Imperial College London, component. number to bacterial cells,2 although on gut South Kensington Campus, Department of Surgery • Transkingdom interactions between virome mucosal surfaces and within the mucus layers and Cancer, London, UK components and bacteria highlights that they may outnumber bacterial cells by 20:1.3 Simon R. Carding there are additional layers of complexity Each gram of human gut content is estimated to Gut Microbes and Health Research Programme, to consider in terms of host–microbial contain at least 108–109 virus-like particles The Quadram Institute, homeostasis. (VLPs), the vast majority of which are crAssphage Norwich Research Park, Norwich, Norfolk, UK • Current microbial therapeutics including (cross-assembly phage), which are DNA phages Norwich Medical School, faecal microbial transplantation need to belonging to the family Podoviridae (Box 1).4,5 University of East Anglia, Norwich Research Park, consider the contribution of the virome. Viruses have cross-kingdom interactions with Norwich, Norfolk, UK journals.sagepub.com/home/tag 1 Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Therapeutic Advances in Gastroenterology 12 Box 1. Getting access to the virome. To study the virome, VLPs are separated from cellular components, usually using a combination of filtration, density centrifugation and enzymatic treatments to eliminate free nucleic acids.9 The nucleic acids are then sequenced and analysed. Compared to the bacterial component of the intestinal microbiome, the intestinal virome has been under-investigated and largely ignored, in large part due to the limited tools available for their identification and classification. Recent advances in high-throughput, next-generation sequencing has allowed detailed and in-depth analysis of microbial communities (metagenomics), leading to the identification of new microbial species, which has only recently been applied to the characterization of the virome.10 There are, however, too few reference viromes, and those that do exist are dominated by unknown sequences with 60–90% of the reads often lacking functional or taxonomic annotations (the ‘viral dark matter’).2,11 Currently, it is estimated that roughly 1% of the virome has been sequenced, leaving the bulk yet to be characterized.8 other organisms within the microbiota that are therefore important in influencing the course together with host genetic variation can change and outcome of virus infections.15 the host (human) phenotype. These virus-driven phenotypic changes can be beneficial to the host or increase the risk of disease.6,7 Currently, it is Bacteriophages estimated that less than 1% of the virome has Microbial viruses modulate their bacterial hosts been sequenced, leaving the bulk of the virome directly through affecting their mortality and yet to be characterized.8 through horizontal gene transfer, and indirectly by reprogramming host metabolism. The human GI tract contains an estimated 1015 bacterio- Human gut virome: main players phages (phages; the phageome) which may repre- sent the richest concentration of biological entities Eukaryotic viruses on Earth.16 Phages can be functionally catego- Sequencing of eukaryotic viral communities in rized based on the lifecycle they adopt after infect- faecal samples from children has identified ing host cells.17 Lytic (virulent) phages lyse the Picobirnaviridae, Adenoviridae, Anelloviridae and cells they infect by hijacking the host cell’s repli- Astroviridae family members, and species such as cation mechanism to package and produce more bocaviruses, enteroviruses, rotaviruses and sapovi- phages and lytic enzymes that cause cell lysis and ruses.12 In addition, disease-associated viruses the release of newly formed phages from the cell. such as herpesviruses, polyomaviruses, anellovi- By contrast, temperate phages incorporate their ruses, adenoviruses, papillomaviruses, polyomavi- genetic material into the host cell chromosome as ruses, hepatitis B virus, hepatitis C virus and prophages and replicate alongside the host cell. In human immunodeficiency virus (HIV) are also some instances, temperate phages do not inte- present in the intestinal viromes of some individu- grate and exist as circular or linear plasmids als, indicating that the gastrointestinal (GI) tract within the host bacterial cell.18 A third category contains viruses capable of infecting host cells. As are pseudolysogenic phages, which upon infect- the majority of humans remain asymptomatic it ing a cell neither integrate stably into the host has been proposed that these pathogenic viruses genome nor co-opt cell replication machinery, or (pathobionts) have become part of the metagen- kill the host cell.17 Recently, analysis of the viral ome of normal individuals, with the majority fraction of existing metagenomic studies identi- rarely causing disease and remaining dormant fied a DNA phage called crAssphage which, due within the host.6,13 Experiments in germ-free and to limitations in our ability to identify phage antibiotic-treated mice have shown that the bacte- sequences, had been overlooked in previous stud- rial microbiome can promote the replication and ies.5 CrAssphages are highly abundant in the gut in some cases persistence of enteric viruses13 with microbiome, it has been predicted, based on host the efficient transmission of mouse mammary co-occurrence profiling that crAssphage infect tumour virus requiring intestinal bacteria.14 Bacteroides species. However, our understanding Interactions between viruses and bacteria, and of crAssphage is limited as they have only recently other constituents of the intestinal
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • Myoviridae Phage PDX Kills Enteroaggregative Escherichia Coli Without Human
    bioRxiv preprint doi: https://doi.org/10.1101/385104; this version posted August 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Myoviridae Phage PDX Kills Enteroaggregative Escherichia coli without Human Microbiome Dysbiosis Leah C. S. Cepko a, Eliotte E. Garling b, Madeline J. Dinsdale c, William P. Scott c, Loralee Bandy c, Tim Nice d, Joshua Faber-Hammond c, and Jay L. Mellies c, a 320 Longwood Avenue, Enders Building, Department of Infectious Disease, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115. U.S.A. b Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109. U.S.A. c Biology Department, Reed College, 3203 SE Woodstock Blvd., Portland, OR, 97202. U. S. A. d Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239. For correspondence: Jay Mellies, Ph.D. Biology Department Reed College 3202 SE Woodstock Blvd. Portland, OR 97202 USA Telephone: 503.517.7964 Fax: 503.777.7773 Email: [email protected] Running title: Phage therapy against EAEC without dysbiosis Keywords: bacteriophage (phage), phage therapy, EAEC, Caudovirales, MDR, Myoviridae, Escherichia virus, microbiome, dysbiosis antibiotic alternatives. bioRxiv preprint doi: https://doi.org/10.1101/385104; this version posted August 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Purpose. To identify therapeutic a bacteriophage that kills diarrheagenic enteroaggregative Escherichia coli (EAEC) while leaving the human microbiome intact.
    [Show full text]
  • Structure, Function and Assembly of the Long, Flexible Tail of Siphophages Romain Linares, Charles-Adrien Arnaud, Séraphine Degroux, Guy Schoehn, Cécile Breyton
    Structure, function and assembly of the long, flexible tail of siphophages Romain Linares, Charles-Adrien Arnaud, Séraphine Degroux, Guy Schoehn, Cécile Breyton To cite this version: Romain Linares, Charles-Adrien Arnaud, Séraphine Degroux, Guy Schoehn, Cécile Breyton. Struc- ture, function and assembly of the long, flexible tail of siphophages. Current Opinion in Virology, Elsevier, 2020, 45, pp.34-42. 10.1016/j.coviro.2020.06.010. hal-02921467 HAL Id: hal-02921467 https://hal.archives-ouvertes.fr/hal-02921467 Submitted on 23 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Structure, function and assembly of the long, flexible tail of siphophages Romain Linares1,3, Charles-Adrien Arnaud2,3, Séraphine Degroux1, Guy Schoehn1 and Cécile Breyton1 1Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology, F-38000 Grenoble, France 2Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, IN 47907, USA Corresponding author: Cécile Breyton ([email protected]) 3These authors contributed equally to this Work. Abstract Bacteriophages, viruses that infect bacteria, are the most abundant biological entities on Earth. Siphophages, accounting for ~60% of known phages, bear a long, flexible tail that allows host recognition and safe delivery of the DNA from the capsid to the cytoplasm of the infected cell.
    [Show full text]
  • Rapid Evolution of the Human Gut Virome
    Rapid evolution of the human gut virome Samuel Minota, Alexandra Brysona, Christel Chehouda, Gary D. Wub, James D. Lewisb,c, and Frederic D. Bushmana,1 aDepartment of Microbiology, bDivision of Gastroenterology, and cCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved May 31, 2013 (received for review January 15, 2013) Humans are colonized by immense populations of viruses, which sequenced independently to allow estimation of within-time point metagenomic analysis shows are mostly unique to each individual. sample variation. Virus-like particles were extracted by sequential To investigate the origin and evolution of the human gut virome, filtration, Centricon ultrafiltration, nuclease treatment, and sol- we analyzed the viral community of one adult individual over 2.5 y vent extraction. Purified viral DNA was subjected to linear am- by extremely deep metagenomic sequencing (56 billion bases of plification using Φ29 DNA polymerase, after which quantitative purified viral sequence from 24 longitudinal fecal samples). After PCR showed that bacterial 16S sequences were reduced to less assembly, 478 well-determined contigs could be identified, which than 10 copies per nanogram of DNA, and human sequences were are inferred to correspond mostly to previously unstudied bacterio- reduced to below 0.1 copies per nanogram, the limit of detection. phage genomes. Fully 80% of these types persisted throughout the Paired-end reads then were acquired using Illumina HiSeq se- duration of the 2.5-y study, indicating long-term global stability.
    [Show full text]
  • Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
    Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses.
    [Show full text]
  • Viruses 2011, 3, 32-46; Doi:10.3390/V3010032 OPEN ACCESS Viruses ISSN 1999-4915
    Viruses 2011, 3, 32-46; doi:10.3390/v3010032 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary Another Really, Really Big Virus James L. Van Etten Department of Plant Pathology, Nebraska Center for Virology, 205 Morrison Hall, University of Nebraska, Lincoln, NE 68583, USA; Email: [email protected]; Tel. +1 402 472 3168. Received: 20 December 2010; in revised form: 13 January 2011 / Accepted: 14 January 2011 / Published: 18 January 2011 Abstract: Viruses with genomes larger than 300 kb and up to 1.2 Mb, which encode hundreds of proteins, are being discovered and characterized with increasing frequency. Most, but not all, of these large viruses (often referred to as giruses) infect protists that live in aqueous environments. Bioinformatic analyses of metagenomes of aqueous samples indicate that large DNA viruses are quite common in nature and await discovery. One issue that is perhaps not appreciated by the virology community is that large viruses, even those classified in the same family, can differ significantly in morphology, lifestyle, and gene complement. This brief commentary, which will mention some of these unique properties, was stimulated by the characterization of the newest member of this club, virus CroV (Fischer, M.G.; Allen, M.J.; Wilson, W.H.; Suttle, C.A. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. USA 2010, 107, 19508-19513 [1]). CroV has a 730 kb genome (with ~544 protein-encoding genes) and infects the marine microzooplankton Cafeteria roenbergensis producing a lytic infection. Keywords: giruses; NCLDV; huge viruses 1.
    [Show full text]
  • Multiple Origins of Prokaryotic and Eukaryotic Single-Stranded DNA Viruses from Bacterial and Archaeal Plasmids
    ARTICLE https://doi.org/10.1038/s41467-019-11433-0 OPEN Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids Darius Kazlauskas 1, Arvind Varsani 2,3, Eugene V. Koonin 4 & Mart Krupovic 5 Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance 1234567890():,; in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occa- sions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. 1 Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania. 2 The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA. 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700 Cape Town, South Africa.
    [Show full text]
  • The Trans-Zoonotic Virome Interface: Measures to Balance, Control and Treat Epidemics
    Review Article More Information *Address for Correspondence: Dr. Vinod Nikhra, MD, Hindu Rao Hospital & NDMC The Trans-zoonotic Virome interface: Medical College, New Delhi, India, Tel: +91- 9810874937; Measures to balance, control and Email: [email protected]; drvinodnikhra@rediff mail.com Submitted: 07 March 2020 treat epidemics Approved: 08 April 2020 Published: 09 April 2020 Vinod Nikhra* How to cite this article: Nikhra V. The Trans- zoonotic Virome interface: Measures to balance, MD, Hindu Rao Hospital & NDMC Medical College, New Delhi, India control and treat epidemics. Ann Biomed Sci Eng. 2020; 4: 020-027. Abstract DOI: 10.29328/journal.abse.1001009 ORCiD: orcid.org/0000-0003-0859-5232 The global virome: The viruses have a global distribution, phylogenetic diversity and host Copyright: © 2020 Nikhra V. This is an open specifi city. They are obligate intracellular parasites with single- or double-stranded DNA or RNA access article distributed under the Creative genomes, and affl ict bacteria, plants, animals and human population. The viral infection begins Commons Attribution License, which permits when surface proteins bind to receptor proteins on the host cell surface, followed by internalisation, unrestricted use, distribution, and reproduction replication and lysis. Further, trans-species interactions of viruses with bacteria, small eukaryotes in any medium, provided the original work is and host are associated with various zoonotic viral diseases and disease progression. properly cited. Keywords: Virome interface; Zoonotic viral Virome interface and transmission: The cross-species transmission from their natural transmission; Viral epidemics; COVID-19; MERS; reservoir, usually mammalian or avian, hosts to infect human-being is a rare probability, but occurs SARS; Nutraceuticals; Probiotics; Anti-viral leading to the zoonotic human viral infection.
    [Show full text]
  • Machine Learning and Data-Parallel Processing for Viral Metagenomics
    From Department of Laboratory Medicine Karolinska Institutet, Stockholm, Sweden MACHINE LEARNING AND DATA-PARALLEL PROCESSING FOR VIRAL METAGENOMICS Zurab Bzhalava Stockholm 2020 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Arkitektkopia AB, 2020 © Zurab Bzhalava, 2020 ISBN 978-91-7831-708-0 Machine Learning and Data-Parallel Processing for Viral Metagenomics THESIS FOR DOCTORAL DEGREE (Ph.D.) The thesis will be defended at Månen 9Q, Alfred Nobels allé 8 (Floor 9), Karolinska Institutet, Campus Fleminsberg, Huddinge. Friday, April 3, 2020, at 9:00 AM By Zurab Bzhalava Principal Supervisor: Opponent: Professor Joakim Dillner Ola Spjuth Karolinska Institutet Uppsala University Department of Laboratory Medicine Department of Pharmaceutical Biosciences Division of Pathology Examination Board: Co-supervisor(s): Panagiotis Papapetrou MD PhD Karin Sundström Stockholm University Karolinska Institutet Department of Computer and Department of Laboratory Medicine Systems Sciences Division of Pathology Tobias Allander Professor Piotr Bała Karolinska Institutet University of Warsaw Department of Microbiology, Tumor and Interdisciplinary Centre for Mathematical Cell Biology and Computational Modelling Jim Dowling KTH Royal Institute of Technology Division of Software and Computer Systems To my family and friends ABSTRACT More than 2 million cancer cases around the world each year are caused by viruses. In addition, there are epidemiological indications that other cancer-associated viruses may also exist. However, the identification of highly divergent and yet unknown viruses in human biospecimens is one of the biggest challenges in bio- informatics. Modern-day Next Generation Sequencing (NGS) technologies can be used to directly sequence biospecimens from clinical cohorts with unprecedented speed and depth.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]