Trimethylamine N-Oxide Metabolism by Abundant Marine Heterotrophic Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Trimethylamine N-Oxide Metabolism by Abundant Marine Heterotrophic Bacteria Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria Ian Lidburya, J. Colin Murrellb, and Yin Chena,1 aSchool of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; and bSchool of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Edited* by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved January 8, 2014 (received for review September 27, 2013) Trimethylamine N-oxide (TMAO) is a common osmolyte found in marine bacteria are not known. It has previously been suggested a variety of marine biota and has been detected at nanomolar that in Methylocella silvestris, a TMA-degrading soil bacterium, an concentrations in oceanic surface waters. TMAO can serve as an aminotransferase protein containing a conserved C-terminal tet- important nutrient for ecologically important marine heterotro- rahydrofolate (THF)-binding domain (Msil_3603) is probably in- phic bacteria, particularly the SAR11 clade and marine Roseobacter volved in the metabolism of TMAO, because this polypeptide was clade (MRC). However, the enzymes responsible for TMAO catab- highly enriched in TMA-grown cells and TMAO is a known in- termediate of TMA metabolism by TMA monooxygenase, Tmm, olism and the membrane transporter required for TMAO uptake + in this bacterium (TMA + NADPH + O + H → TMAO + H O + into microbial cells have yet to be identified. We show here that + 2 2 the enzyme TMAO demethylase (Tdm) catalyzes the first step in NADP ) (13). It is hypothesized that TMAO is further metab- TMAO degradation. This enzyme represents a large group of pro- olized to ammonium and formaldehyde, which serve as N and teins with an uncharacterized domain (DUF1989). The function C/energy sources, respectively, for this bacterium (13). ATP-binding cassette (ABC) transporters form one of the of TMAO demethylase in a representative from the SAR11 clade largest gene superfamilies found within many bacterial genomes (strain HIMB59) and in a representative of the MRC (Ruegeria pom- (14), and their expression is frequently detected in the marine eroyi DSS-3) was confirmed by heterologous expression of tdm environment (15–17). ABC transporters are essential for bacte- (the gene encoding Tdm) in Escherichia coli.InR. pomeroyi, muta- ria because they are responsible for the uptake of a wide range of genesis experiments confirmed that tdm is essential for growth on compounds, such as sugars, amino acids, metals, and vitamins, at TMAO. We also identified a unique ATP-binding cassette transporter the expense of ATP (18). They usually consist of three subunits: MICROBIOLOGY (TmoXWV) found in a variety of marine bacteria and experimentally a transmembrane domain that is bound to an inner membrane- confirmed its specificity for TMAO through marker exchange muta- bound ATP-binding domain and a periplasmic substrate-binding genesis and lacZ reporter assays of the promoter for genes encoding protein (SBP), which binds a given ligand. SBPs confer substrate this transporter. Both Tdm and TmoXWV are particularly abundant specificity and can bind their ligands with very high affinity (19, in natural seawater assemblages and actively expressed, as indi- 20). One group of ABC transporters specialize in the uptake of cated by a number of recent metatranscriptomic and metaproteomic compatible osmolytes and structurally related compounds, such studies. These data suggest that TMAO represents a significant, yet as glycine betaine (GBT), choline, carnitine, and proline betaine overlooked, nutrient for marine bacteria. (21, 22). These transporters either function in osmoregulation (23) or play a role in substrate catabolism (19). A bacterial ATP- TMAO transporter | nitrogenous osmolyte | methylated amine metabolism | dependent TMAO transporter has been identified (24), but the marine nitrogen cycle genes encoding this transport system are unknown. The SAR11 clade (Pelagibacteraceae) and the marine Rose- obacter clade (MRC, Rhodobacteraceae) are two groups of ma- rimethylamine N-oxide (TMAO) frequently occurs in the rine bacteria that differ in their ecology, but both play important Ttissues of a variety of marine biota (1) and is predicted to roles in marine C, S, and N cycles (25–27). Bacteria of the have a number of important physiological roles (2). In marine SAR11 clade bacteria dominate low-nutrient environments, elasmobranchs (sharks and rays), TMAO accumulates at high have streamlined genomes, are generally slow-growing and have concentrations (up to 500 mM), helping to offset the destabi- lizing effects of urea on cellular proteins (1, 3, 4). TMAO can be Significance metabolized to small methylated amines, for example, tri-, di-, and monomethylamine (TMA, DMA, and MMA, respectively). These volatile organic N compounds are precursors of marine Trimethylamine N-oxide (TMAO) is a nitrogen-containing osmo- aerosols and the potent greenhouse gas nitrous oxide in the lyte found in a wide variety of marine biota and has been de- marine atmosphere (5). In anoxic sediments or pockets of hyp- tected at nanomolar concentrations in surface seawaters. This oxic conditions, such as in marine snow, they are precursors for study provides the first genetic and biochemical evidence for the potent greenhouse gas methane (6). In marine surface uptake and catabolism of TMAO by marine heterotrophic bac- waters, TMAO concentrations can reach up to 79 nM; however, teria that are abundant in the oceans. The genes conferring the owing to the technical difficulties associated with quantifying ability of bacteria to catabolize TMAO we identified in this study TMAO in seawater, reports of in situ concentrations of TMAO are highly expressed in the marine environment and can be used are limited (7, 8). In a previously published study in which as functional biomarkers to better understand oceanic microbial- TMAO and TMA were quantified in the marine environment, mediated carbon and nitrogen cycles. Our data suggest that TMAO had a higher average concentration throughout the water TMAO represents a significant, yet overlooked, nutrient for ma- column and over a seasonal cycle (8). rine bacteria in the surface oceans. TMAO is a well-studied terminal electron acceptor for an- aerobic microbial respiration (9, 10), but its catabolism in aer- Author contributions: Y.C. designed research; I.L. performed research; I.L., J.C.M., and Y.C. obic surface seawater is not well understood. Recent studies have analyzed data; and I.L., J.C.M., and Y.C. wrote the paper. shown that TMAO in the Sargasso Sea is predominantly oxidized The authors declare no conflict of interest. by bacterioplankton as an energy source (11) and that the marine *This Direct Submission article had a prearranged editor. methylotrophic bacterium Methylophilales sp. HTCC2181 oxidizes 1To whom correspondence should be addressed. E-mail: [email protected]. TMAO to CO2 to generate energy (12). However, the genes and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. enzymes responsible for the metabolism and uptake of TMAO by 1073/pnas.1317834111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1317834111 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 distinct auxotrophic requirements for certain compounds (28–30). cells expressing the putative Tdm from R. pomeroyi produced 984 ± In contrast, bacteria of the MRC have larger genomes, display high 45 μM DMA in the culture medium (Fig. 2B), confirming that metabolic versatility, can live a particle-associated lifestyle, and SPO1562 does indeed encode for a Tdm. E. coli cells transformed often represent a large proportion of the metabolically active with vector, pET28a alone, did not produce DMA. bacterial community in coastal oceans (25, 31–34). Ecologically To determine whether SPO1562 is required for growth of R. relevant representatives of the MRC are readily cultivated and pomeroyi on TMAO, this gene was mutated. As predicted, the amenable to genetic manipulation, thereby making them good mutant (Δtdm::Gm) could not grow on TMAO or its upstream model organisms to investigate bacterial ecophysiology in the ma- precursor TMA (Fig. 1B), although it could grow on DMA and rine environment. Ruegeria pomeroyi DSS-3, isolated off the coast MMA (Table S1). To confirm whether tdm is essential in R. of Oregon in the United States (35), is the best characterized pomeroyi, tdm was cloned along with its promoter from R. model marine organism in this clade (32, 36–39). pomeroyi into the broad-host-range plasmid pBBR1MCS-km Δ Here, we identify a TMAO-specific microbial ABC trans- (40), which was then mobilized into the tdm::Gm mutant via porter and the TMAO demethylase, Tdm (TMAO → DMA + conjugation. Complementation of the mutant with the native tdm formaldehyde), from key marine heterotrophs, including bacteria gene from R. pomeroyi reversed the phenotype, restoring growth from the SAR11 clade and the MRC. This transporter and Tdm on both TMAO and TMA as a sole N source (Fig. 1D). Com- are highly expressed in the marine environment, as indicated by plementation of this mutant with the vector pBBR1MCS-km a number of recent metatranscriptomic and metaproteomic alone did not result in growth on TMA and TMAO (Fig. 1C). studies. Therefore, our data suggest that TMAO is an important, yet overlooked, nutrient for marine bacteria. Distribution of Tdm Homologs in Other Marine Bacteria. To test the importance of the tdm gene and to investigate its occurrence in the Results marine environment, we further investigated the distribution of R. pomeroyi Tdm in the genomes of isolated marine bacteria. The Tdm from Identification and Confirmation of a Functional Tdm in . R. pomeroyi was used as the query sequence to generate a BLASTP We used R. pomeroyi DSS-3 as the model organism to study TMAO database using the Integrated Microbial Genomes system at the metabolism.Thisbacteriumcangrowonmethylatedamines,in- Joint Genome Institute. Closely related homologs (E value = 0.0) cluding TMAO, as a sole N source (Fig. 1A). In the genome se- of Tdm were retrieved from representatives of the SAR11 clade quence of R.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Functional Profiling of the Human Gut Microbiome Using Metatranscriptomic Approach
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH DOCTORAL THESIS DECEMBER 2019 XAVIER MARTÍNEZ SERRANO PROGRAMA DE DOCTORAT EN MEDICINA DEPARTAMENT DE MEDICINA FUNCTIONAL PROFILING OF THE HUMAN GUT MICROBIOME USING METATRANSCRIPTOMIC APPROACH XAVIER MARTÍNEZ SERRANO PhD THESIS – Barcelona, December 2019 Director Tutor Author Dr. Chaysavanh Manichanh Dr. Victor Manuel Vargas Blasco Xavier Martínez Serrano Universitat Autònoma de Barcelona Dr. Chaysavanh Manichanh Principal Investigator – Microbiome Lab Department of Physiology and Physiopathology of the Digestive Tract Vall d’Hebron Institut de Recerca Certify that the thesis entitled “Functional profiling of the human gut microbiome using metatranscriptomic approach” submitted by Xavier Martínez Serrano, was carried out under her supervision and tutorship of Dr. Víctor Vargas Blasco, and authorize its presentation for the defense ahead of the corresponding tribunal. Barcelona, December 2019 “All sorts of computer errors are now turning up. You'd be surprised to know the number of doctors who claim they are treating pregnant men” I. Asimov “Science knows no country, because knowledge belongs to humanity, and is the torch which illuminates the world.” L.
    [Show full text]
  • Physiology of Dimethylsulfoniopropionate Metabolism
    PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R. HENRIKSEN (Under the direction of William B. Whitman) ABSTRACT Dimethylsulfoniopropionate (DMSP) is a ubiquitous marine compound whose degradation is important in carbon and sulfur cycles and influences global climate due to its degradation product dimethyl sulfide (DMS). Silicibacter pomeroyi, a member of the a marine Roseobacter clade, is a model system for the study of DMSP degradation. S. pomeroyi can cleave DMSP to DMS and carry out demethylation to methanethiol (MeSH), as well as degrade both these compounds. Dif- ferential display proteomics was used to find proteins whose abundance increased when chemostat cultures of S. pomeroyi were grown with DMSP as the sole carbon source. Bioinformatic analysis of these genes and their gene clusters suggested roles in DMSP metabolism. A genetic system was developed for S. pomeroyi that enabled gene knockout to confirm the function of these genes. INDEX WORDS: Silicibacter pomeroyi, Ruegeria pomeroyi, dimethylsulfoniopropionate, DMSP, roseobacter, dimethyl sulfide, DMS, methanethiol, MeSH, marine, environmental isolate, proteomics, genetic system, physiology, metabolism PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R. HENRIKSEN B.S. (Microbiology), University of Oklahoma, 2000 B.S. (Biochemistry), University of Oklahoma, 2000 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2008 cc 2008 James R. Henriksen Some Rights Reserved Creative Commons License Version 3.0 Attribution-Noncommercial-Share Alike PHYSIOLOGY OF DIMETHYLSULFONIOPROPIONATE METABOLISM IN A MODEL MARINE ROSEOBACTER, Silicibacter pomeroyi by JAMES R.
    [Show full text]
  • Metatranscriptomics to Characterize Respiratory Virome, Microbiome, and Host Response Directly from Clinical Samples
    Metatranscriptomics to characterize respiratory virome, microbiome, and host response directly from clinical samples Seesandra Rajagopala ( [email protected] ) Vanderbilt University Medical Center Nicole Bakhoum Vanderbilt University Medical Center Suman Pakala Vanderbilt University Medical Center Meghan Shilts Vanderbilt University Medical Center Christian Rosas-Salazar Vanderbilt University Medical Center Annie Mai Vanderbilt University Medical Center Helen Boone Vanderbilt University Medical Center Rendie McHenry Vanderbilt University Medical Center Shibu Yooseph University of Central Florida https://orcid.org/0000-0001-5581-5002 Natasha Halasa Vanderbilt University Medical Center Suman Das Vanderbilt University Medical Center https://orcid.org/0000-0003-2496-9724 Article Keywords: Metatranscriptomics, Virome, Microbiome, Next-Generation Sequencing (NGS), RNA-Seq, Acute Respiratory Infection (ARI), Respiratory Syncytial Virus (RSV), Coronavirus (CoV) Posted Date: October 15th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-77157/v1 Page 1/31 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/31 Abstract We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low-biomass clinical samples. Using nasal swab samples, we have demonstrated that this method captures the comprehensive RNA virome with sucient sequencing depth required to assemble complete genomes. We nd a surprisingly high-frequency of Respiratory Syncytial Virus (RSV) and Coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-infections in children with symptomatic RSV. In addition, we have characterized commensal and pathogenic bacteria, and fungi at the species-level. Functional analysis of bacterial transcripts revealed H.
    [Show full text]
  • Identification of Genetic Modules Mediating the Jekyll and Hyde
    ORIGINAL RESEARCH published: 13 November 2015 doi: 10.3389/fmicb.2015.01262 Identification of Genetic Modules Mediating the Jekyll and Hyde Interaction of Dinoroseobacter shibae with the Dinoflagellate Prorocentrum minimum Hui Wang1†, Jürgen Tomasch1†, Victoria Michael2, Sabin Bhuju3, Michael Jarek3, Jörn Petersen2 and Irene Wagner-Döbler1* 1 Helmholtz-Centre for Infection Research, Microbial Communication, Braunschweig, Germany, 2 German Collection of Microorganisms and Cell Cultures, Microbial Ecology and Diversity Research, Braunschweig, Germany, 3 Helmholtz-Centre for Infection Research, Genome Analytics, Braunschweig, Germany The co-cultivation of the alphaproteobacterium Dinoroseobacter shibae with the Edited by: dinoflagellate Prorocentrum minimum is characterized by a mutualistic phase followed Rex Malmstrom, by a pathogenic phase in which the bacterium kills aging algae. Thus it resembles the DOE Joint Genome Institute, USA “Jekyll-and-Hyde” interaction that has been proposed for other algae and Roseobacter. Reviewed by: Here, we identified key genetic components of this interaction. Analysis of the Rebecca Case, University of Alberta, Canada transcriptome of D. shibae in co-culture with P. minimum revealed growth phase Shady A. Amin, dependent changes in the expression of quorum sensing, the CtrA phosphorelay, and University of Washington, USA flagella biosynthesis genes. Deletion of the histidine kinase gene cckA which is part of *Correspondence: the CtrA phosphorelay or the flagella genes fliC or flgK resulted in complete lack of Irene Wagner-Döbler irene.wagner-doebler@helmholtz- growth stimulation of P. minimum in co-culture with the D. shibae mutants. By contrast, hzi.de pathogenicity was entirely dependent on one of the extrachromosomal elements of †These authors have contributed D.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • An Updated Genome Annotation for the Model Marine Bacterium Ruegeria Pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran*
    Rivers et al. Standards in Genomic Sciences 2014, 9:11 http://www.standardsingenomics.com/content/9/1/11 SHORT GENOME REPORT Open Access An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran* Abstract When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. Keywords: Roseobacter,DMSP Introduction Genome properties Ruegeria pomeroyi DSS-3 is an important model organ- The R. pomeroyi DSS-3 genome contains a 4,109,437 bp ism in studies of the physiology and ecology of marine circular chromosome (5 bp shorter than previously re- bacteria [1]. It is a genetically tractable strain that has ported [1]) and a 491,611 bp circular megaplasmid, with been essential for elucidating bacterial roles in the mar- a G + C content of 64.1 (Table 3). A detailed description ine sulfur and carbon cycles [2,3] and the biology and of the genome is found in the original article [1]. genomics of the marine Roseobacter clade [4], a group that makes up 5–20% of bacteria in ocean surface waters [5,6].
    [Show full text]
  • Metagenomics and Metatranscriptomics
    Metagenomics and Metatranscriptomics Jinyu Yang Bioinformatics and Mathematical Biosciences Lab July/15th/2016 Background Conventional sequencing begins with a culture of identical cells as a source of DNA Bottleneck Vast majority of microbial biodiversity had been missed by cultivation-based methods Large groups of microorganisms cannot be cultured and thus cannot be sequenced Bottleneck For example: 16S ribosomal RNA sequences 1. Relatively short 2. Often conserved within a species 3. Generally different between species Many 16S rRNA sequences have been found which do not belong to any known cultured species there are numerous non-isolated organisms Cultivation-based methods find < 1% of the bacterial and archaeal species in a sample Next-generation sequencing The price of DNA sequencing continues to fall All genes from all the members of the communities in environmental samples Metagenomics The term “Metagenomics” first appeared in 1998 Metagenomics: 1. genomic analysis of microbial DNA, which is extracted directly from communities in environmental samples 2. Alleviating the need for isolation and lab cultivation of individual species 3. Focus on microbial communities Metagenomics Taxonomic analysis (“who is out there?”) Assign each read to a taxonomy Functional analysis (“what are they doing?”) Map each read to a functional role/pathway Comparative analysis (“how do different samples compare?”) Level 1: sequence composition Level 2: taxonomic diversity Level 3: functional complement, etc. Metagenomics Metagenomics Metagenomics Microbial
    [Show full text]
  • Roseovarius Azorensis Sp. Nov., Isolated from Seawater At
    Author version: Antonie van Leeuwenhoek, vol.105(3); 2014; 571-578 Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca, Azores Raju Rajasabapathy • Chellandi Mohandass • Syed Gulam Dastager • Qing Liu • Thi-Nhan Khieu • Chu Ky Son • Wen-Jun Li • Ana Colaco Raju Rajasabapathy · Chellandi Mohandass* Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India. E-mail: [email protected] Syed Gulam Dastager NCIM Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha road, Pune 411 008, India Qing Liu · Thi-Nhan Khieu · Wen-Jun Li Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, P.R. China Thi-Nhan Khieu · Chu Ky Son School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Vietnam Ana Colaco IMAR-Department of Oceanography and Fisheries, University Açores, Cais de Sta Cruz, 9901-862, Horta, Portugal Abstract A Gram-negative, motile, non-spore forming, rod shaped aerobic bacterium, designated strain SSW084T, was isolated from a surface seawater sample collected at Espalamaca (38°33’N; 28°39’W), Azores. Growth was found to occur from 15 – 40 °C (optimum 30 °C), at pH 7.0 – 9.0 (optimum pH 7.0) and with 25 to 100 % seawater or 0.5 – 7.0 % NaCl in the presence of Mg2+ and Ca2+; no growth was found with NaCl alone. Colonies on seawater nutrient agar (SWNA) were observed to be punctiform, white, convex, circular, smooth, and translucent. Strain SSW084T did not grow on Zobell Marine Agar (ZMA) and tryptic soy agar (TSA) even when seawater supplemented. The major respiratory quinone was found to be Q-10 and the G+C content was determined to be 61.9 mol%.
    [Show full text]
  • Trees, Fungi and Bacteria: Tripartite Metatranscriptomics of a Root Microbiome Responding to Soil Contamination E
    Gonzalez et al. Microbiome (2018) 6:53 https://doi.org/10.1186/s40168-018-0432-5 RESEARCH Open Access Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination E. Gonzalez1,2, F. E. Pitre3,4, A. P. Pagé5, J. Marleau3, W. Guidi Nissim6, M. St-Arnaud3,4, M. Labrecque3,4, S. Joly3,4, E. Yergeau7 and N. J. B. Brereton3* Abstract Background: One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Methods: Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. ‘Fish Creek’ roots from trees pot grown in petroleum hydrocarbon- contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. Results: The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5).
    [Show full text]
  • Fur Is the Master Regulator of the Extraintestinal Pathogenic
    Downloaded from RESEARCH ARTICLE crossmark Fur Is the Master Regulator of the Extraintestinal Pathogenic mbio.asm.org Escherichia coli Response to Serum on August 3, 2015 - Published by Sagi Huja,a Yaara Oren,a Dvora Biran,a Susann Meyer,b Ulrich Dobrindt,c Joerg Bernhard,b Doerte Becher,b Michael Hecker,b Rotem Sorek,d Eliora Z. Rona,e Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israela; Institute for Microbiology, Ernst-Moritz-Arndt-Universität, Greifswald, Germanyb; Institute of Hygiene, Westfälische Wilhelms-Universität, Münster, Germanyc; Department of Molecular Genetics Weizmann Institute of Science, Rehovot, Israeld; MIGAL, Galilee Research Center, Kiriat Shmona, Israele ABSTRACT Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (coli- bacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nu- tritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes mbio.asm.org the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum—active and inactive—in- volved metabolic genes.
    [Show full text]
  • Gene Transfer Agents in Plant Pathogenic Bacteria: Comparative Mobilomics, Genomic Survey and Recombinogenic Impacts
    Gene Transfer Agents in Plant Pathogenic Bacteria: Comparative Mobilomics, Genomic Survey and Recombinogenic Impacts Mustafa O Jibrin University of Florida Gerald V. Minsavage University of Florida Erica M. Goss University of Florida Pamela D. Roberts University of Florida Jeffrey B Jones ( [email protected] ) University of Florida https://orcid.org/0000-0003-0061-470X Research article Keywords: Prokaryotic mobile genetic elements Posted Date: August 29th, 2019 DOI: https://doi.org/10.21203/rs.2.10679/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background Gene transfer agents (GTAs) are phage-like mediators of gene transfer in bacterial species. Typically, strains of a bacteria species which have GTA shows more recombination than strains without GTAs. GTA-mediated gene transfer activity has been shown for few bacteria, with Rhodobacter capsulatus being the prototypical GTA. GTA have not been previously studied in plant pathogenic bacteria. A recent study inferring recombination in strains of the bacterial spot xanthomonads identied a Nigerian lineage which showed unusual recombination background. We initially set out to understand genomic drivers of recombination in this genome by focusing on mobile genetic elements. Results We identied a unique cluster which was present in the Nigerian strain but absent in other sequenced strains of bacterial spot xanthomonads. The protein sequence of a gene within this cluster contained the GTA_TIM domain that is present in bacteria with GTA. We identied GTA clusters in other Xanthomonas species as well as species of Agrobacterium and Pantoea. Recombination analyses showed that generally, strains of Xanthomonas with GTA have more inferred recombination events than strains without GTA, which could lead to genome divergence.
    [Show full text]