Screening Potato Genotypes for Antioxidant Activity, Identification of the Responsible

Total Page:16

File Type:pdf, Size:1020Kb

Screening Potato Genotypes for Antioxidant Activity, Identification of the Responsible View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M Repository SCREENING POTATO GENOTYPES FOR ANTIOXIDANT ACTIVITY, IDENTIFICATION OF THE RESPONSIBLE COMPOUNDS, AND DIFFERENTIATING RUSSET NORKOTAH STRAINS USING AFLP AND MICROSATELLITE MARKER ANALYSIS A Dissertation by ANNA LOUISE HALE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2003 Major Subject: Genetics SCREENING POTATO GENOTYPES FOR ANTIOXIDANT ACTIVITY, IDENTIFICATION OF THE RESPONSIBLE COMPOUNDS, AND DIFFERENTIATING RUSSET NORKOTAH STRAINS USING AFLP AND MICROSATELLITE MARKER ANALYSIS A Dissertation by ANNA LOUISE HALE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: J. C. Miller, Jr Jim J. Giovannoni (Chair of Committee) (Member) Jeffrey D. Hart R. Daniel Lineberger (Member) (Member) Stephen King Tim Davis (Member) (Head of Department) Geoffrey M. Kapler (Chair of Genetics Faculty) December 2003 Major Subject: Genetics iii ABSTRACT Screening Potato Genotypes for Antioxidant Activity, Identification of the Responsible Compounds, and Differentiating Russet Norkotah Strains Using AFLP and Microsatellite Marker Analysis. (December 2003) Anna Louise Hale, B.S., Texas A&M University Chair of Advisory Committee: Dr. J. Creighton Miller, Jr. Total antioxidant activity and total carotenoid levels were evaluated for more than 100 common potato (Solanum tuberosum, L.) cultivars grown in the United States, advanced breeding lines from several Western U.S. breeding programs, and 47 related, tuber-bearing species. An initial assessment of variability for antioxidant activity provided baseline information to be used for potential potato promotion and for the development of new varieties with greater human health benefits. Wide variability in antioxidant levels provided evidence of genetic control of this trait, indicating that it could be possible to breed for enhanced levels of antioxidant compounds in potato. Accessions, varieties, and advanced breeding lines identified in the broad screen as having high antioxidant activity and high total carotenoid levels, were fine screened via HPLC to determine specific phenolic and carotenoid compounds present in potato. The objective of the study was to identify parents for use in the Texas breeding program to develop potato varieties containing increased levels antioxidant compounds. In the broad screen for total antioxidant activity, the 47 related, tuber-bearing species showed a wider range of variability than the cultivated varieties and breeding iv lines. Based on the DPPH assay, antioxidant activity ranged from 103-648 uM trolox equivalents in the cultivated varieties and advanced breeding lines, while that of the wild species was 42-892. HPLC analysis revealed that the phenolic content of the species, and their cultivated counterparts, was primarily composed of caffeic and chlorogenic acids. Other phenolics identified were p-coumaric acid, rutin hydrate, vanillic acid, epicatechin, t-cinnamic acid, gallic acid, and salicylic acid. The highest phenolic content discovered in the accessions was five-fold higher than the highest of the cultivated genotypes. Carotenoid analysis revealed lutein in the accessions, but the yellow-flesh breeding lines were much higher in carotenoids. In addition to the work conducted on antioxidants, an attempt was made to separate intraclonal variants of the potato cultivar Russet Norkotah. Eleven microsatellite primers and 112 AFLP primer combinations failed to produce any reproducible polymorphisms. The inability to detect differences between the clones could be due to the tetraploid nature of the clones or epigenetic differences not detected by the procedures utilized in this study. v ACKNOWLEDGMENTS I would like to express my sincere thanks and appreciation to my committee chairman, Dr. J. Creighton Miller, Jr. for his patience and guidance during my years as a graduate student. Dr. Miller’s enthusiasm for this research encouraged me to complete this project. He will always be remembered as a wonderful advisor, a great role model, and a good friend. Dr. Jeannie Miller, Creighton’s wife, is a truly remarkable woman. Her assistance in editing everything I’ve written, including, presentations, abstracts, web pages, and this dissertation is greatly appreciated. I would also like to thank my committee members for their unique contributions to this project. I have greatly admired Dr. Jim Giovannoni since our initial encounter. Jim has taught me a great deal about molecular genetics, but more importantly, he represents the type of professional that I strive to become some day. Despite being well known in the world of science, Jim never seems to forget about the little people. His patience, knowledge, and his willingness to serve on my committee, even after moving to New York, are greatly appreciated. I would like to thank Dr. Jeffrey Hart for his statistical help on a number of projects as well as his wonderful sense of humor. Dr. Hart’s enthusiasm for this project when it was becoming routine for me, made it exciting once again. Dr. Daniel Lineberger, in addition to his scientific advice, taught me how to design web pages, and encouraged my artistic side. His novel approaches to problems and his ability to predict the “next big thing” are greatly admired. Steve King’s vi enthusiasm for this project, his advice, and his and willingness to join the committee on short notice are greatly appreciated. In addition to my committee members, a number of other faculty members have had a significant impact on me during graduate school. Dr. Jerry Taylor, in addition to his help with quantitative genetics, was very supportive of me both in and out of the classroom. He is full of great advice and will always be remembered as a good friend. Dr. Jim Wild has encouraged me since my freshman year at A&M, and his trust in me is greatly appreciated. I would like to express my appreciation to the people who I’ve worked with in Dr. Miller’s lab including Doug Scheuring, and my fellow graduate students, Lavanya Reddivari, Tyann Blessington, and Ndambe Nzaramba. None of this would have been possible without our student workers Kristin Sikorski, Dean Whittaker, Pamela Cifra, Christine Johnson, Tori Meyer, Jenny DeMarko, and Mark Tietz. I would like to extend my special thanks and love to my husband, Eric, my parents, and my grandfather, for their patience, love, understanding, and support through the years. Finally, I would like to thank the friends that I’ve met at Texas A&M (especially Ashlee McCaskill and Shanna Moore) for their support. vii TABLE OF CONTENTS Page ABSTRACT…………… ................................................................................................. iii ACKNOWLEDGMENTS..................................................................................................v TABLE OF CONTENTS................................................................................................ vii LIST OF FIGURES…….................................................................................................. xi LIST OF TABLES…….. ............................................................................................... xiii CHAPTER I INTRODUCTION......................................................................................1 Statement of the Problem ...............................................................3 II LITERATURE REVIEW...........................................................................4 Introduction ....................................................................................4 History of the Potato ..........................................................4 Potato Production in Texas ................................................8 Nutritional Value of the Potato ........................................11 Part #1. Screening Potato Genotypes for Antioxidant Activity and Identification of the Responsible Compounds ......................14 Micronutrients and Their Importance to Human Health..14 Antioxidants .....................................................................15 Phenolics and Polyphenols...............................................19 Carotenoids.......................................................................23 Antioxidants in Potatoes...................................................31 Phenolics in Potatoes........................................................32 Carotenoids in Potatoes....................................................38 viii CHAPTER Page Part #2 - Differentiating 7 Russet Norkotah Strains Using AFLP Marker Analysis ................................................................49 Karyological and Isozyme Analyses ................................50 Restriction Fragment Length Polymorphisms (RFLP) ....51 Randomly Amplified Polymorphic DNA (RAPD) ..........52 Amplified Fragment Length Polymorphisms (AFLPs)....53 Microsatellites ..................................................................56 III INTRASPECIFIC VARIABILITY FOR ANTIOXIDANT ACTIVITY IN POTATO (S. TUBEROSUM L.) ........................................................60 Introduction ..................................................................................60 Materials and Methods.................................................................62 Plant Materials..................................................................62
Recommended publications
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • WO 2016/007985 Al 21 January 2016 (21.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/007985 Al 21 January 2016 (21.01.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01P 21/00 (2006.01) A01N 43/653 (2006.01) kind of national protection available): AE, AG, AL, AM, A01G 1/00 (2006.01) A01N 43/54 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/AU2015/000393 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 8 July 2015 (08.07.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 2014902720 15 July 2014 (15.07.2014) AU kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: SIMPLOT AUSTRALIA PTY LTD TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [AU/AU]; Chifley Business Park, 2 Chifley Drive, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Mentone, Victoria 31 4 (AU).
    [Show full text]
  • I0500 E Cop Con Foratura
    The potato Introducing our special guest, Solanum tuberosum, the “humble tuber” that spread from its Andean birthplace across six continents, staving off hunger, fuelling economic development and changing the course of world history 12 International Year of the Potato 2008 flowers New light on a hidden treasure fruit compound leaf main stems lateral stem CIP stolons tuber mother tuber roots The plant The tuber The potato (Solanum tuberosum) is a As the potato plant grows, its compound herbaceous annual that grows up to leaves manufacture starch that is transferred 100 cm tall and produces a tuber – also called to the ends of its underground stems (or potato – so rich in starch that it ranks as the stolons). The stems thicken to form a few or world’s fourth most important food crop, after as many as 20 tubers close to the soil surface. maize, wheat and rice. The potato belongs to The number of tubers that actually reach the Solanaceae – or “nightshade”– family of maturity depends on available moisture and flowering plants, and shares the genus soil nutrients. Tubers may vary in shape and Solanum with at least 1000 other species, size, and normally weigh up to 300 g each. including tomato and eggplant. Recent At the end of the growing season, the research indicates that S. tuberosum is plant’s leaves and stems die down to the soil divided into two, only slightly different, level and its new tubers detach from their cultivar groups: Andigenum, which is adapted stolons. The tubers then serve as a nutrient to short day conditions and is mainly grown store that allows the plant to survive the cold, in the Andes, and Chilotanum, the potato now and later regrow and reproduce.
    [Show full text]
  • WO 2016/004057 Al O O© O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/004057 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every AOlC l/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2015/038584 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 30 June 2015 (30.06.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/021,000 3 July 2014 (03.07.2014) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: EETBE, INC. [US/US]; 1604 Kirby Parkway, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Memphis, TN 38120 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor: QVYJT, Fernando; 1604 Kirby Parkway, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Memphis, TN 38120 (US).
    [Show full text]
  • Kartoffeln 2009
    nn KatalogKatalog www.www.nn.de.de KartoffKartoff elneln 20092009 n Preise,PrPreieisese, VVeVerfügbarkeiterfrfügügbbarkrkeie t unundnd online-Bestellungononlilinnee-B-Beesstetellllunung übüüberbeerr www.wwwwww.n.de Alle Angaben ohne Gewähr! © 2009 by n Bardenhorst 15 D-33739 Bielefeld Fon 0521/988 1778 • Fax 0521/988 1779 [email protected] • www.naturwuchs.de Fotos, Layout und Satz: Werner K. Sauk Bereits vor fast 8000 Jahren wurden in den Hochlagen der Anden Sorten kommt man innerhalb der EU. von den Inkas Kartoffeln als Nahrungsmittel angebaut. Spani- sche Seefahrer brachten in der ersten Hälfte des 16. Jahrhun- Kartoffeln werden vegetativ über die Knollen vermehrt. Werden derts Knollen von ihren Reisen mit, die aber rund 200 Jahre lang die Knollen immer wieder weiter vermehrt, sammeln sich in eher als botanische Rarität und Zierpflanze an den europäischen ihnen aber auch Krankheitserreger an, so daß in Folge die Pro- Adelshöfen gehalten wurden statt als Nahrungsquelle für das duktivität der Knollen nachläßt. Deswegen müssen Saat- bzw. Volk. In Irland jedoch erkannte man relativ frühzeitig, daß die Pflanzkartoffelbestände bei den Landwirten vor der Ernte auf Knollen ideal für die kargen Böden waren. den Äckern zertifiziert werden. Das setzt aber zwingend voraus, daß die Sorte in einer EU-Sortenliste auch eingetragen ist. Keine In Deutschland sorgte Friedrich II. von Preußen, der Alte Fritz, für Eintragung (z.B. bei Lokalsorten oder Sorten, die nicht mehr in die Verbreitung der Kartoffeln. Kostenlos ließ er 1744 und 1745 der Liste stehen) oder ein zu hoher Gehalt an Krankheitserregern Knollen an die Bauern im gesamten Reich verteilen – ohne großen - keine Zertifizierung. Diese Kartoffeln dürfen dann nur noch als Erfolg.
    [Show full text]
  • WO 2014/153178 A2 25 September 2014 (25.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2014/153178 A2 25 September 2014 (25.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01H 5/00 (2006.01) C12N 15/82 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/029434 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 14 March 2014 (14.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/785,059 14 March 2013 (14.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicants: CIBUS US LLC [US/US]; 6455 Nancy Ridge kind of regional protection available): ARIPO (BW, GH, Drive, San Diego, CA 92121 (US). CIBUS EUROPE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, B.V.
    [Show full text]
  • Zasoby Banku Genów Ziemniaka
    INSTYTUT HODOWLI I AKLIMATYZACJI ROŚLIN – PAŃSTWOWY INSTYTUT BADAWCZY W RADZIKOWIE ZAKŁAD NASIENNICTWA I OCHRONY ZIEMNIAKA W BONINIE ZASOBY BANKU GENÓW ZIEMNIAKA BONIN 2016 1 Powstała w 1981 roku w Instytucie Ziemniaka w Boninie, (obecnie Instytut Hodowli i Aklimatyzacji Roślin- Państwowy Instytut Badawczy w Radzikowie, Zakład Nasiennictwa i Ochrony Ziemniaka w Boninie) kolekcja genotypów ziemniaka in vitro jest jedyną tak dużą kolekcją zdrowych form tetraploidalnych w Polsce. Obecnie stan zgromadzonych i utrzymywanych zasobów genowych in vitro wynosi około 1600 form w tym ok. 1500 odmian. Kolekcję podstawową tworzą polskie odmiany, które stanowią ok. 20% zasobów. Odmiany polskie - 280 obiektów to odmiany oryginalne, począwszy od starej zarejestrowanej w 1902 roku odmiany Świteź, Warszawa z 1906, poprzez wpisane do rejestru w okresie powojennym - Flisak, Pierwiosnek, Uran, do najnowszych z 2016 roku – Aldona, Amarant, Tacja, Tonacja. Do banku in vitro wprowadzane są rośliny zdrowe tj. wolne od wirusów (PVA, PVX, PVS, PVM, PVY i PLRV), wiroida wrzecionowatości bulw ziemniaka (PSTVd) oraz bakterii Clavibacter michiganensis ssp.sepedenicum oraz Ralstonia solanacearum. Zgromadzone zasoby w formie in vitro są w 100% przebadane i wolne od w/w patogenów. Bank genów ziemniaka in vitro musi łączyć zadania długoterminowego przechowywania z bieżącymi zadaniami, tj. przygotowaniem zdrowego materiału wyjściowego dla hodowli. Od 1993 roku wszystkie hodowle w Polsce korzystają z materiałów in vitro, a dla wielu odmian jest to jedyny sposób, dzięki któremu można uzyskać zdrowy materiał wyjściowy do produkcji nasiennej. Utrzymywanie genotypów ziemniaka jako roślin in vitro jest jedyną drogą dla szybkiego zaopatrzenia hodowli w zdrowy materiał. Tak przechowywane zasoby nie są narażone na infekcję patogenami, a jednocześnie umożliwiają bardzo szybkie mnożenie pożądanych odmian.
    [Show full text]