Salivary Glands ... Parotid, Sublingual and Submandibular

Total Page:16

File Type:pdf, Size:1020Kb

Salivary Glands ... Parotid, Sublingual and Submandibular وزارة التعليم العالي والبحث العلمي جامعة القادسية كلية طب اﻻسنان HISTOLOGICAL STUDY FOR SALIVARY GLAND AND COMPARESION BETWEEN ADULT AND CHILD IN SOME HISTOLOGICAL STRUCTURES بحث مقدم الى كلية طب اﻻسنان كجزء من متطلبات نيل شهادة البكالوريوس تقدم به الطالبات: ندى علي حسين فرح علي عبد أطياف ماجد جميل امال عبد الكريم جريو بأشراف: الدكتورة نهى شاكر علي 1440هـ 2019 م 1 بسم هللا الرحمن الرحيم ))قالوا سبحانك ﻻ علم لنا اﻹ ما علمتنا إنك انت العليم الحكيم (( صدق هللا العلي العظيم سورة البقرة /32 2 شكر وثناء : الحمد هلل الذي ذكره شرف للذاكرين وشكره فوز للشاكرين وحمده عز للحامدين وطاعته نجاة للطائعين والصﻻة والسﻻم على خاتم اﻷنبياء والمرسلين محمد وعلى ال بيته الطيبين الطاهرين وبعد : فعن رسول هللا )صل هللا عليه واله وسلم( انه قال:من لم يشكر الناس لم يشكره هللا فبعد اﻻنتهاء من هذا البحث يطيب لي في مقام الشكر ان اسجل بأمتنان شكري وتقديري الى دكتورتي الفاضلة )الدكتورة نهى شاكر علي ( وذلك لقبولها باﻻشراف على البحث . كما أتقدم بشكري وامتناني لعائلتي وأصدقائي وزمﻻئي في الدراسة لمساندتهم لي كما اهدي شكري لكل من اعانني في دراستي سواء بالقول او الفعل او الدعاء وأخيرا فأني وان ذكرت بعض اﻷسماء دون اﻷخرى فأن ذلك ﻻ يعني عدم الوفاء والتنكر للقسم اﻻخر بل لهم مني جميعا بعد المعذرة – أكثر مما تحويه اﻷسطر وتقدمه الكلمات. اﻻهداء : 3 الى بؤرة النور التي عبرت بي نحو اﻷمل واﻷماني الجميلة واتسع قلبه ليحتوي حلمي حين ضاقت الدنيا فروض الصعاب من اجلي وسار في حلكة الدرب ليغرس معاني النور والصفاء في قلبي والدي الحبيب لقد عاش من اجلنا من اجل ان نحيا حياة كريمه في بيتا كريم وفي احضان علم نافع كريم ومن اجل ان انفذ امامه بشهاده التي تعترف كل قصاصة فيها بانه سبب جهدها , فقد كنت معنى الحياة لي وقد رضاني هللا فيك يا ابتي فهل رضيت عني الى من تتسابق الكلمات لتخرج معبرتا عن مكنون ذاتها الى التي تمتهن الحب وتغزل اﻷمن في قلب عصفورايرفرف فوق ناصية اﻻحﻻم فتبقى روحي متﻻﻷلة ومشرقة طالما كانت دعواتها عنوان دربي وتبقى امنياتي على وشك التحقق طالما يدها في يدي وسنارة جهدها وسهرها تصتاد لي الراحة وتخطف التعب واﻻلم من قلبي الى امي التي مهما كبرت سأبقى طفلتها التي تكتب اسمها على دفتر قلبهافي ساعة حزنها . CONTENT: 4 Conclusion p.7 Introduction p.8 Parotid gland p.12 Introduction p.12 Location p.15 Function p.15 Development p.16 Histology p.16 Comparesion between parotid gland in child and adult p.18 Sublingual gland p.19 Location p.20 Function p.20 Development p.21 Histology p.21 Comparesion between sublingual gland in child and adult p.21 Submandibular gland p.23 Location p.24 Function p.24 Development p.24 Histology p.25 Comparesion between submandibular gland in child and p.26 adult Minor salivary glands p.27 Location p.27 Function p.27 Development p.28 Histology p.28 Comparesion between minor salivary glands in child and p.29 adult Refrences p.30 5 Figures content Figure1 p.8 Figure2 p.9 Figure3 p.13 Figure4 p.14 Figure5 p.17 Figure6 p.18 Figure7 p.18 Figure8 p.19 Figure9 p.22 Figure10 p.23 Figure11 p.23 Abstract: Salivary glands are compound, tubuloacinar , merocrine , exocrine glands which ducts open into the oral cavity . There glands that distributed in many locations inside the oral cavity which include 800-1000 glands. Secretion of saliva is the main function emanating from salivary glands that is depend on are three pairs of major salivary glands which are parotid gland , sublingual gland , and submandibular gland and minor salivary 6 afferent stimulation (taste and mastication ). Saliva is a complex fluid composed from over 99% water , yet the small amount of additional inorganic and organic compounds (such as protein ,glycoproteins , and enzymes ) allows it to perfume many important functions . A major role is related to production of mucin , which acts as lubricant during mastication , swallowing , and speech . The mucous film protect the mucosa and keep it moist , Also it brings substances into solution so that they can tasted , and limit the activity of bacteria by causing their aggregation . Saliva contains minerals and acts as buffer , both features helps to maintain the integrity of the dental enamel . Salivary glands pass major changes during age in morphology , amount of secretions , and size , Also it may be changes due to many types of pathology . REVIEW 7 Salivary glands Introduction: Fig(1) Saliva is produced by three pairs of major salivary glands ... Parotid, Sublingual and Submandibular . as well as minor accessory glands found throughout the mucosa. Fig (2)A diagram of part of a salivary gland showing a serous acinus and mixed serous-mucous acinus. 8 Salivary glands are made up of secretory acini (acini - means a rounded secretory unit) and ducts. There are two types of secretions - serous and mucous. The acini can either be serous, mucous, or a mixture of serous and mucous. A serous acinus secretes proteins in an isotonic watery fluid. A mucous acinuss secretes secretesmucin – lubricant. In a mixed serous-mucous acinus, the serous acinus forms a serous demilune around mucous acinus,The secretory units merge into intercalated ducts, which are lined by simple low cuboidal epithelium, and surrounded by myoepithelial cells. These ducts continue on as striated ducts. These have a folded basal membrane, to enable active transport of substances out of the duct. Water resorption, and ion secretion takes place in the striated ducts, to make saliva hypotonic (reduced Na,Cl ions and increased carbonate, and potassium ions).The striated ducts lead into interlobular (excretory) ducts, lined with a tall columnar epithelium.The glands are divided into lobules by connective tissue septa. Each lobule contains numerous secretory units, or acini. Aging of salivary glands show some structural changes, such as: 1- Decrease in volume of acinar tissue. 2- Increase in fibrous tissue. 3- Increase in adipose tissue. 4- Ductal hyperplasia and dilation. 5- In addition, there are also changes in salivary contents: A- Decrease in concentration of secretory IgA. B- Decrease in the amount of mucin. 9 However, there is no overall change in the amount of saliva secreted. And Salivary glands secrete saliva which has many benefits for the oral cavity and health in general. These benefits include: -Protection: Saliva consists of proteins (for example; mucins) that lubricate and protect both the soft and hard tissues of the oral cavity. Mucins are the principal organic constituents of mucus, the slimy visco-elastic material that coats all mucosal surfaces. -Buffering(6): In general, the higher the saliva flow rate, the faster the clearance and the higher the buffer capacity, hence better protection from dental caries. Therefore, people with a slower rate of saliva secretion, combined with a low buffer capacity, have lessened salivary protection against microbes. -Pellicle formation: Saliva forms a pellicle on the surface of the tooth to prevent wearing. The film contains mucins and proline-rich glycoprotein from the saliva. The proteins (statherin and proline-rich proteins) within the salivary pellicle inhibit demineralization and promote remineralization by attracting calcium ions. -Maintenance of tooth integrity: Demineralization occurs when enamel disintegrates due to the presence of acid. When this occurs, the buffering capacity effect of saliva (increases saliva flow rate) inhibits demineralization. Saliva can then begin to promote the 10 remineralization of the tooth by strengthening the enamel with calcium and phosphate minerals. -Antimicrobial action: Saliva can prevent microbial growth based on the elements it contains. For example, lactoferrin in saliva binds naturally with iron. Since iron is a major component of bacterial cell walls, removal of iron breaks down the cell wall, which in turn breaks down the bacteria. Antimicrobial peptides such as histatins inhibit the growth of Candida albicans and Streptococcus mutans. Salivary Immunoglobulin A serves to aggregate oral bacteria such as S. mutans and prevent the formation of dental plaque. -Tissue repair(9): Saliva can encourage soft tissue repair by decreasing clotting time and increasing wound contraction. -Digestion: Saliva contains the enzyme amylase, which hydrolyses starch into maltose and dextrin. As a result, saliva allows digestion to occur before the food reaches the stomach(16). -Taste(12): Saliva acts as a solvent in which solid particles can dissolve in and enter the taste buds through oral mucosa located on the tongue. These taste buds are found within foliate and circumvallate papillae, where minor salivary glands secrete saliva(10) . REVIEW 11 1-Parotid gland : Introduction: The parotid gland is the largest major salivary gland. The parotid is 5.8 cm craniocaudally and 3.4cm ventrodor- sally. It weighs between 14 and 28 grams. The main excretory duct, Stensen’s duct measures 4–6cm in length and 5 mm in diameter. A small portion of the parotid generally accompanies the duct forming an accessory gland, a few millimeter anterior to the superficial portion of the gland. The parotid gland receives its blood supply from the branches of the external carotid artery as they pass through the gland. The parasympathetic nerve supply is derived mainly from the ninth cranial nerve reaching the gland via the otic ganglion and the auriculotemporal nerve. The sympathetic innervation of all salivary glands is provided by the postganglionic fibers from the superior cervical ganglion and reaches the individual gland in association with their vascular supply. The lymphatic drainage is via paraparotid and intraparotid lymph nodes into the superficial and deep cervical lymph nodes. The parotid gland is enclosed in a well defined connective tissue capsule which sends septa into the gland, separating it into lobes and lobules. The parotid gland is a pure serous gland ; all the acinar cells. The parotid gland is a pure serous gland ; all the acinarcells are similar in structure to the serous cells described earlier.
Recommended publications
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Salivary Gland Infections and Salivary Stones (Sialadentis and Sialithiasis)
    Salivary Gland Infections and Salivary Stones (Sialadentis and Sialithiasis) What is Sialadenitis and Sialithiasis? Sialdenitis is an infection of the salivary glands that causes painful swelling of the glands that produce saliva, or spit. Bacterial infections, diabetes, tumors or stones in the salivary glands, and tooth problems (poor oral hygiene) may cause a salivary gland infection. The symptoms include pain, swelling, pus in the mouth, neck skin infection. These infections and affect the submandibular gland (below the jaw) or the parotid glands (in front of the ears). The symptoms can be minor and just be a small swelling after meals (symptoms tend to be worse after times of high saliva flow). Rarely, the swelling in the mouth will progress and can cut off your airway and cause you to stop breathing. What Causes Sialadenitis and Sialithiasis When the flow of saliva is blocked by a small stone (salilithiasis) in a salivary gland or when a person is dehydrated, bacteria can build up and cause an infection. A viral infection, such as the mumps, also can cause a salivary gland to get infected and swell. These infections can also be caused by a spread from rotten or decaying teeth. Sometimes there can be a buildup of calcium in the saliva ducts that form into stones. These can easily stop the flow of saliva and cause problems How are these infections and stones treated? Treatment depends on what caused your salivary gland infection. If the infection is caused by bacteria, your doctor may prescribe antibiotics. Home treatment such as drinking fluids, applying warm compresses, and sucking on lemon wedges or sour candy to increase saliva may help to clear the infection quicker.
    [Show full text]
  • Pediatric Oral Pathology. Soft Tissue and Periodontal Conditions
    PEDIATRIC ORAL HEALTH 0031-3955100 $15.00 + .OO PEDIATRIC ORAL PATHOLOGY Soft Tissue and Periodontal Conditions Jayne E. Delaney, DDS, MSD, and Martha Ann Keels, DDS, PhD Parents often are concerned with “lumps and bumps” that appear in the mouths of children. Pediatricians should be able to distinguish the normal clinical appearance of the intraoral tissues in children from gingivitis, periodontal abnormalities, and oral lesions. Recognizing early primary tooth mobility or early primary tooth loss is critical because these dental findings may be indicative of a severe underlying medical illness. Diagnostic criteria and .treatment recommendations are reviewed for many commonly encountered oral conditions. INTRAORAL SOFT-TISSUE ABNORMALITIES Congenital Lesions Ankyloglossia Ankyloglossia, or “tongue-tied,” is a common congenital condition characterized by an abnormally short lingual frenum and the inability to extend the tongue. The frenum may lengthen with growth to produce normal function. If the extent of the ankyloglossia is severe, speech may be affected, mandating speech therapy or surgical correction. If a child is able to extend his or her tongue sufficiently far to moisten the lower lip, then a frenectomy usually is not indicated (Fig. 1). From Private Practice, Waldorf, Maryland (JED); and Department of Pediatrics, Division of Pediatric Dentistry, Duke Children’s Hospital, Duke University Medical Center, Durham, North Carolina (MAK) ~~ ~ ~ ~ ~ ~ ~ PEDIATRIC CLINICS OF NORTH AMERICA VOLUME 47 * NUMBER 5 OCTOBER 2000 1125 1126 DELANEY & KEELS Figure 1. A, Short lingual frenum in a 4-year-old child. B, Child demonstrating the ability to lick his lower lip. Developmental Lesions Geographic Tongue Benign migratory glossitis, or geographic tongue, is a common finding during routine clinical examination of children.
    [Show full text]
  • Anatomy-Nerve Tracking
    INJECTABLES ANATOMY www.aestheticmed.co.uk Nerve tracking Dr Sotirios Foutsizoglou on the anatomy of the facial nerve he anatomy of the human face has received enormous attention during the last few years, as a plethora of anti- ageing procedures, both surgical and non-surgical, are being performed with increasing frequency. The success of each of those procedures is greatly dependent on Tthe sound knowledge of the underlying facial anatomy and the understanding of the age-related changes occurring in the facial skeleton, ligaments, muscles, facial fat compartments, and skin. The facial nerve is the most important motor nerve of the face as it is the sole motor supply to all the muscles of facial expression and other muscles derived from the mesenchyme in the embryonic second pharyngeal arch.1 The danger zone for facial nerve injury has been well described. Confidence when approaching the nerve and its branches comes from an understanding of its three dimensional course relative to the layered facial soft tissue and being aware of surface anatomy landmarks and measurements as will be discussed in this article. Aesthetic medicine is not static, it is ever evolving and new exciting knowledge emerges every day unmasking the relationship of the ageing process and the macroscopic and microscopic (intrinsic) age-related changes. Sound anatomical knowledge, taking into consideration the natural balance between the different facial structures and facial layers, is fundamental to understanding these changes which will subsequently help us develop more effective, natural, long-standing and most importantly, safer rejuvenating treatments and procedures. The soft tissue of the face is arranged in five layers: 1) Skin; 2) Subcutaneous fat layer; 3) Superficial musculoaponeurotic system (SMAS); 4) Areolar tissue or loose connective tissue (most clearly seen in the scalp and forehead); 5) Deep fascia formed by the periosteum of facial bones and the fascial covering of the muscles of mastication (lateral face).
    [Show full text]
  • Head and Neck
    DEFINITION OF ANATOMIC SITES WITHIN THE HEAD AND NECK adapted from the Summary Staging Guide 1977 published by the SEER Program, and the AJCC Cancer Staging Manual Fifth Edition published by the American Joint Committee on Cancer Staging. Note: Not all sites in the lip, oral cavity, pharynx and salivary glands are listed below. All sites to which a Summary Stage scheme applies are listed at the begining of the scheme. ORAL CAVITY AND ORAL PHARYNX (in ICD-O-3 sequence) The oral cavity extends from the skin-vermilion junction of the lips to the junction of the hard and soft palate above and to the line of circumvallate papillae below. The oral pharynx (oropharynx) is that portion of the continuity of the pharynx extending from the plane of the inferior surface of the soft palate to the plane of the superior surface of the hyoid bone (or floor of the vallecula) and includes the base of tongue, inferior surface of the soft palate and the uvula, the anterior and posterior tonsillar pillars, the glossotonsillar sulci, the pharyngeal tonsils, and the lateral and posterior walls. The oral cavity and oral pharynx are divided into the following specific areas: LIPS (C00._; vermilion surface, mucosal lip, labial mucosa) upper and lower, form the upper and lower anterior wall of the oral cavity. They consist of an exposed surface of modified epider- mis beginning at the junction of the vermilion border with the skin and including only the vermilion surface or that portion of the lip that comes into contact with the opposing lip.
    [Show full text]
  • Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases
    International Scholarly Research Network ISRN Dentistry Volume 2011, Article ID 457567, 6 pages doi:10.5402/2011/457567 Case Report Cheilitis Glandularis: Two Case Reports of Asian-Japanese Men and Literature Review of Japanese Cases Toru Yanagawa,1 Akira Yamaguchi,2 Hiroyuki Harada,3 Kenji Yamagata,1 Naomi Ishibashi,1 Masayuki Noguchi,4 Kojiro Onizawa,1 and Hiroki Bukawa1 1 Department of Oral and Maxillofacial Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan 2 Section of Oral Pathology, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 3 Section of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Department of Oral Restitution, Graduate School Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan 4 Department of Pathology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan Correspondence should be addressed to Toru Yanagawa, [email protected] Received 25 October 2010; Accepted 5 December 2010 Academic Editor: G. L. Lodi Copyright © 2011 Toru Yanagawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cheilitis glandularis (CG) is a rare disorder characterized by swelling of the lip with hyperplasia of the labial salivary glands. CG is most frequently encountered in the lower lip, in middle-aged to older Caucasian men; however Asian cases were rarely reported.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Glands: a Correlation in Postmortem Subjects
    J. clin. Path., 1970, 23, 690-694 Lymphocytic sialadenitis in the major and minor glands: a correlation in postmortem subjects D. M. CHISHOLM, J. P. WATERHOUSE, AND D. K. MASON From the Department of Oral Medicine and Pathology, University of Glasgow Dental Hospital and School, Glasgow, Scotland, and the Department of Oral Pathology, University ofIllinois, Chicago, USA SYNOPSIS In the present investigation, the prevalence offocal lymphocytic adenitis in the submandibular salivary gland was observed in a series of 116 postmortem subjects after suitable exclusions had been made. Focal lymphocytic adenitis could not be demonstrated in the labial salivary glands. The degree of lymphocytic infiltration in the labial salivary glands is positively correlated with the level of focal lymphocytic adenitis in the submandibular glands in the same subject. Lymphocytic foci and lymphocytic infiltrations found under these circumstances are probably related. This finding provides conceptual support for the examina- tion, by biopsy, of the labial glands in patients suspected of Sjogren's syndrome. The aim of the present study was to investigate muscle layer of the lower lip were excised at the prevalence and degree of lymphocytic sial- necropsy. Tissue was obtained from necropsies adenitis in the submandibular and minor labial at the Bernhard Baron Institute of Pathology, glands in a series of postmortem subjects. London Hospital, and the University Depart- Waterhouse (1963) has shown that the changes ment of Pathology, Royal Infirmary, Glasgow, observed in the submandibular gland in the between March and June 1967. They were taken postmortem subject reflect the degree of focal from all necropsies on fixed days of the week adenitis present in the parotid and lacrimal excepting a few not obtainable for administrative glands.
    [Show full text]
  • Epithelium 2 : Glandular Epithelium Histology Laboratory -­‐ Year 1, Fall Term Dr
    Epithelium 2 : Glandular Epithelium Histology Laboratory -­‐ Year 1, Fall Term Dr. Heather Yule ([email protected]) October 21, 2014 Slides for study: 75 (Salivary Gland), 355 (Pancreas Tail), 48 (Atrophic Mammary Gland), 49 (Active Mammary Gland) and 50 (Resting Mammary Gland) Electron micrographs for : study EM: Serous acinus in parotid gland EM: Mucous acinus in mixed salivary gland EM: Pancreatic acinar cell Main Objective: Understand key histological features of glandular epithelium and relate structure to function. Specific Objectives: 1. Describe key histological differences between endocrine and exocrine glands including their development. 2. Compare three modes of secretion in glands; holocrine, apocrine and merocrine. 3. Explain the functional significance of polarization of glandular epithelial cells. 4. Define the terms parenchyma, stroma, mucous acinus, serous acinus and serous a demilune and be able to them identify in glandular tissue. 5. Distinguish exocrine and endocrine pancreas. 6. Compare the histology of resting, lactating and postmenopausal mammary glands. Keywords: endocrine gland, exocrine gland, holocrine, apocrine, merocrine, polarity, parenchyma, stroma, acinus, myoepithelial cell, mucous gland, serous gland, mixed or seromucous gland, serous demilune, exocrine pancreas, endocrine pancreas (pancreatic islets), resting mammary gland, lactating mammary gland, postmenopausal mammary gland “This copy is made solely for your personal use for research, private study, education, parody, satire, criticism, or review
    [Show full text]
  • Salivary Glands
    GASTROINTESTINAL SYSTEM [Anatomy and functions of salivary gland] 1 INTRODUCTION Digestive system is made up of gastrointestinal tract (GI tract) or alimentary canal and accessory organs, which help in the process of digestion and absorption. GI tract is a tubular structure extending from the mouth up to anus, with a length of about 30 feet. GI tract is formed by two types of organs: • Primary digestive organs. • Accessory digestive organs 2 Primary Digestive Organs: Primary digestive organs are the organs where actual digestion takes place. Primary digestive organs are: Mouth Pharynx Esophagus Stomach 3 Anatomy and functions of mouth: FUNCTIONAL ANATOMY OF MOUTH: Mouth is otherwise known as oral cavity or buccal cavity. It is formed by cheeks, lips and palate. It encloses the teeth, tongue and salivary glands. Mouth opens anteriorly to the exterior through lips and posteriorly through fauces into the pharynx. Digestive juice present in the mouth is saliva, which is secreted by the salivary glands. 4 ANATOMY OF MOUTH 5 FUNCTIONS OF MOUTH: Primary function of mouth is eating and it has few other important functions also. Functions of mouth include: Ingestion of food materials. Chewing the food and mixing it with saliva. Appreciation of taste of the food. Transfer of food (bolus) to the esophagus by swallowing . Role in speech . Social functions such as smiling and other expressions. 6 SALIVARY GLANDS: The saliva is secreted by three pairs of major (larger) salivary glands and some minor (small) salivary glands. Major glands are: 1. Parotid glands 2. Submaxillary or submandibular glands 3. Sublingual glands. 7 Parotid Glands: Parotid glands are the largest of all salivary glands, situated at the side of the face just below and in front of the ear.
    [Show full text]
  • Salivary Glands Massage
    Patient Education Sheet How to Massage Salivary Glands The Foundation thanks Ava J. Wu, DDS for authoring this Patient Education Sheet. Dr. Wu is a Clinical Professor and Co-Director of the Salivary Gland Dysfunction Clinic, School of Dentistry, University of California, San Fr anci sc o. If a sharp and stabbing pain occurs in one of your salivary glands right before or while eating or drinking, the cause might be an obstruction (a stone or mucous plug). In rare cases, associated gland swelling can accompany the discomfort. Here are some tips for massaging or “milking” the gland that might help: Figure 1A: The parotid glands are 2A located bilaterally in the cheek area in front of your ear and have a “tail” area that can extend over the lower jaw. 1A Figure 2A: The submandibular and sublingual glands are located bilaterally under your jaw and 2B tongue with the sublingual gland closer to the chin. Figures 1B and 2B: Place two fingers on the body or 1B tail area of the parotid, Or under the jaw for the submandibular/sublingual glands. 2C Figures 1C and 2C: Sweep fingers forward with gentle pressure as indicated by the black arrows. This will 1C encourage movement of saliva past a possible obstruction or constriction and into the oral cavity. Additional Tips: • Stay well hydrated to encourage the flow of saliva through the gland. • Temporarily avoid foods and beverages that cause the pain and possible swelling. • Apply warm compresses to the area to increase comfort. • Ibuprofen may be taken temporarily to decrease pain and inflammation.
    [Show full text]
  • Oral Cavity Histology Histology > Digestive System > Digestive System
    Oral Cavity Histology Histology > Digestive System > Digestive System Oral Cavity LINGUAL PAPILLAE OF THE TONGUE Lingual papillae cover 2/3rds of its anterior surface; lingual tonsils cover its posterior surface. There are three types of lingual papillae: - Filiform, fungiform, and circumvallate; a 4th type, called foliate papillae, are rudimentary in humans. - Surface comprises stratified squamous epithelia - Core comprises lamina propria (connective tissue and vasculature) - Skeletal muscle lies deep to submucosa; skeletal muscle fibers run in multiple directions, allowing the tongue to move freely. - Taste buds lie within furrows or clefts between papillae; each taste bud comprises precursor, immature, and mature taste receptor cells and opens to the furrow via a taste pore. Distinguishing Features: Filiform papillae • Most numerous papillae • Their role is to provide a rough surface that aids in chewing via their keratinized, stratified squamous epithelia, which forms characteristic spikes. • They do not have taste buds. Fungiform papillae • "Fungi" refers to its rounded, mushroom-like surface, which is covered by stratified squamous epithelium. Circumvallate papillae • Are also rounded, but much larger and more bulbous. • On either side of the circumvallate papillae are wide clefts, aka, furrows or trenches; though not visible in our sample, serous Ebner's glands open into these spaces. DENTITION Comprise layers of calcified tissues surrounding a cavity that houses neurovascular structures. Key Features Regions 1 / 3 • The crown, which lies above the gums • The neck, the constricted area • The root, which lies within the alveoli (aka, sockets) of the jaw bones. • Pulp cavity lies in the center of the tooth, and extends into the root as the root canal.
    [Show full text]