The Biology of Variation in Anatomical Brain Asymmetries

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Variation in Anatomical Brain Asymmetries The biology of variation in anatomical brain asymmetries Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens besluit van het college van decanen in het openbaar te verdedigen op donderdag 2 februari 2017 om 12.30 uur precies door Tulio Manuel Guadalupe Estrada geboren op 3 november 1982 te Moskou (Rusland) 1 507449-L-bw-Guadalupe Processed on: 11-1-2017 Promotor: Prof. dr. S.E. Fisher Copromotor: Dr. C. Francks (MPI) Manuscriptcommissie: Prof. dr. C.F. Beckmann Prof. dr. K.E. Watkins (University of Oxford, Verenigd Koninkrijk) Dr. S. Ocklenburg (Ruhr-Universität Bochum, Duitsland) 2 507449-L-bw-Guadalupe Processed on: 11-1-2017 The biology of variation in anatomical brain asymmetries Doctoral Thesis to obtain the degree of doctor from Radboud University Nijmegen on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken, according to the decision of the Council of Deans to be defended in public on Thursday, February 2, 2017 at 12.30 hours by Tulio Manuel Guadalupe Estrada Born on November 3, 1982 in Moscow (Russia) 3 507449-L-bw-Guadalupe Processed on: 11-1-2017 Supervisor: Prof. dr. S.E. Fisher Co-supervisor: Dr. C. Francks (MPI) Doctoral Thesis Committee: Prof. dr. C.F. Beckmann Prof. dr. K.E. Watkins (University of Oxford, United Kingdom) Dr. S. Ocklenburg (Ruhr-Universität Bochum, Germany) 4 507449-L-bw-Guadalupe Processed on: 11-1-2017 Table of Contents General introduction ..................................................................................................................................... 9 Asymmetries of human brain anatomy .................................................................................................. 10 Individual differences in brain asymmetry ............................................................................................. 11 Genetics of brain asymmetries ............................................................................................................... 14 Altered anatomical brain asymmetries and cognitive functions ............................................................ 16 Identifying biological factors related to anatomical brain asymmetries ................................................ 17 Summary of research chapters ............................................................................................................... 19 Differences in cerebral cortical anatomy of left- and right-handers .......................................................... 23 Abstract ................................................................................................................................................... 24 Introduction ............................................................................................................................................ 25 Methods .................................................................................................................................................. 27 Study dataset ...................................................................................................................................... 27 Image acquisition ................................................................................................................................ 28 Image processing ................................................................................................................................ 28 Cortical correlates of handedness ...................................................................................................... 29 Power analysis .................................................................................................................................... 29 Results ..................................................................................................................................................... 30 Discussion................................................................................................................................................ 33 Acknowledgements ................................................................................................................................. 36 Appendix ................................................................................................................................................. 37 Supplementary material ......................................................................................................................... 37 Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity ................................................................................. 49 Abstract ................................................................................................................................................... 50 Introduction ............................................................................................................................................ 51 Methods .................................................................................................................................................. 53 Study datasets ..................................................................................................................................... 53 Image acquisition ................................................................................................................................ 53 Image processing ................................................................................................................................ 54 Parcellation of cortical regions ........................................................................................................... 55 Regional asymmetry mapping by sex ................................................................................................. 56 5 507449-L-bw-Guadalupe Processed on: 11-1-2017 Total brain volume and asymmetry in the PT region .......................................................................... 56 Genotyping .......................................................................................................................................... 56 Genome-wide association scans ......................................................................................................... 57 Genome-wide association scan meta-analysis ................................................................................... 57 GWAS candidate pathway enrichment analysis ................................................................................. 58 Meta-VBM analysis of the rs785248 polymorphism .......................................................................... 59 Results ..................................................................................................................................................... 59 Sex and cerebral cortical asymmetry .................................................................................................. 59 Cortical parcellation with FreeSurfer .................................................................................................. 60 Total brain volume and PT asymmetry ............................................................................................... 62 Genetic analysis .................................................................................................................................. 64 Meta-VBM analysis of rs785248 ......................................................................................................... 66 Discussion................................................................................................................................................ 68 Asymmetry of the planum temporale is sexually dimorphic .............................................................. 68 HO probability map measures individual differences in PT regional asymmetry ............................... 69 Genes involved in steroid hormone biology influence population variance in PT asymmetry .......... 71 Additional sexually dimorphic cerebral asymmetries ......................................................................... 73 Acknowledgements ................................................................................................................................. 73 Appendix ................................................................................................................................................. 75 Supplementary material ..................................................................................................................... 75 Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets ....... 83 Abstract ................................................................................................................................................... 84 Introduction ............................................................................................................................................ 85 Methods .................................................................................................................................................. 87 Participant populations ....................................................................................................................... 87 Image acquisition ...............................................................................................................................
Recommended publications
  • In Search of the Biological Roots of Typical and Atypical Human Brain Asymmetry
    Accepted Manuscript In search of the biological roots of typical and atypical human brain asymmetry Clyde Francks PII: S1571-0645(19)30099-5 DOI: https://doi.org/10.1016/j.plrev.2019.07.004 Reference: PLREV 1124 To appear in: Physics of Life Reviews Received date: 9 July 2019 Accepted date: 12 July 2019 Please cite this article in press as: Francks C. In search of the biological roots of typical and atypical human brain asymmetry. Phys Life Rev (2019), https://doi.org/10.1016/j.plrev.2019.07.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. In search of the biological roots of typical and atypical human brain asymmetry. Comment on “Phenotypes in hemispheric functional segregation? Perspectives and challenges” by Guy Vingerhoets. Clyde Francks1,2 1Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands 2Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands Email address: [email protected] Keywords: Brain asymmetry; brain functions; laterality; human genetics; left-right axis; brain hemispheres. In this comprehensive and insightful review, Vingerhoets [1] discusses the multi-dimensional nature of inter-individual variation in functional brain asymmetry, and its potential relevance to behavioural variation and psychopathology.
    [Show full text]
  • What Does the Dominant Eye Dominate? a Brief and Somewhat Contentious Review
    Perception & Psychophysics 2003, 65 (2), 310-317 What does the dominant eye dominate? A brief and somewhat contentious review ALISTAIR P. MAPP, HIROSHI ONO, and RAPHAEL BARBEITO York University, Toronto, Ontario, Canada We examine a set of implicit and explicit claims about the concept of eye dominance that have been made over the years and note that the new literature on eye dominance does not reflect the old litera- ture from the first half of the last century. We argue that the visual and oculomotor function of the dom- inant eye—defined by such criteria as asymmetry in acuity, rivalry, or sighting—remains unknown and that the usefulness of the concept for understanding its function is yet to be determined. We suggest that the sighting-dominant eye is the eye used for monocular tasks and has no unique functional role in vision. Interest in eye dominance has a long and rich history. Coren and Kaplan’sfinding discussed in Claim 2, below. Coren and Porac (1975) published an annotated bibliog- The three defining criteria are raphy of 235 articles on this topic. Their search began with (a) the eye with better visual acuity, contrast sensitivity, the original article on eye dominanceby Porta (1593) and or other measure of visual functioning . ., (b) the eye in extended to 1975. Recently, we searched the 1975–2002 which a rivalingstimulusis most often dominant,and (c) the PsychINFO database and found an additional 340 arti- eye used for sighting when, for instance, one looks at a cles. (This paper is not intended to be a review of the en- distant object through a ring held in both hands at arm’s tire ocular dominance literature.
    [Show full text]
  • Algid Ma. 33S~3
    3~?<? Algid Ma. 33S~3 DIFFERENTIAL EFFECTS OF BIOFEEDBACK INPUT ON LOWERING FRONTALIS ELECTROMYOGRAPHIC LEVELS IN RIGHT AND LEFT HANDERS DISSERTATION Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY By Kenneth N. Walker, B.S., M.Ed, Denton, Texas August, 1990 Walker, Kenneth N. Differential Effects of Biofeedback Input on Lowering Frontalis Electromyographic Levels In Right and Left Handers. Doctor of Philosophy (Health Psychology/Behavioral Medicine), August 1990, 70 pages, 3 tables, 6 figures, references, 73 titles. This investigation was an attempt to replicate and expand previous research which suggested that laterality of electromyographic biofeedback input had a significant effect in lowering frontalis muscle activity. In 1984 Ginn and Harrell conducted a study in which they reported that subjects receiving left ear only audio biofeedback had significantly greater reductions in frontalis muscle activity than those receiving right ear only or both ear feedback. This study was limited to one biofeedback session and subjects were selected based on demonstration of right hand/ear dominance. The purpose of the present study was to determine whether the left ear effect reported by Ginn and Harrell could be replicated. Furthermore, the current investigation sought to extend the previous finding to left handed subjects and explore the stability of the effect, if found, by adding a second biofeedback session. Subjects were 96 students recruited from undergraduate psychology classes. They were screened for handedness by the Edinburgh Handedness Inventory which resulted in identification of 48 right handers and 48 left handers.
    [Show full text]
  • The Hands to Say It
    Issue 91, February 2008 www.proteinspotlight.org The hands to say it Vivienne Baillie Gerritsen When I was a little girl, I thought that my left-handed classmates were special. I envied their difference. And I used to marvel at the way they crouched over their desk, embracing something invisible as they did their best to avoid smudging ink all over their sheet of paper. Left-handedness is special. But so is right-handedness. Humans are not the only animals to make use of their hands – or claws, or paws, or hooves - but they are the only ones who show a marked preference for either the left one, or the right one. If this is so, there must be a reason for it. And not only must there be a reason but it must translate a certain structure of our brain: an asymmetry somewhere. Indeed, our brain is divided into two hemispheres which are dedicated to processing different activities. One side looks after our dreams, while the other is far more down to earth. LRRTM1 is the first protein to have been discovered which seems to be directly involved in this brain asymmetry. Consequently, it influences the handedness of a human-being and, more astonishingly, may also predispose individuals to psychotic troubles such as schizophrenia. don’t have a distinct preference for one hand over the other. The passing of roles from hand to mind expresses a particular brain structure. In turn, the progressive use of speech has continued to mould our brain into a shape peculiar to the human species.
    [Show full text]
  • Psichologijos Žodynas Dictionary of Psychology
    ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY VILNIAUS UNIVERSITETAS Albinas Bagdonas Eglė Rimkutė ANGLŲ–LIETUVIŲ KALBŲ PSICHOLOGIJOS ŽODYNAS Apie 17 000 žodžių ENGLISH–LITHUANIAN DICTIONARY OF PSYCHOLOGY About 17 000 words VILNIAUS UNIVERSITETO LEIDYKLA VILNIUS 2013 UDK 159.9(038) Ba-119 Apsvarstė ir rekomendavo išleisti Vilniaus universiteto Filosofijos fakulteto taryba (2013 m. kovo 6 d.; protokolas Nr. 2) RECENZENTAI: prof. Audronė LINIAUSKAITĖ Klaipėdos universitetas doc. Dalia NASVYTIENĖ Lietuvos edukologijos universitetas TERMINOLOGIJOS KONSULTANTĖ dr. Palmira ZEMLEVIČIŪTĖ REDAKCINĖ KOMISIJA: Albinas BAGDONAS Vida JAKUTIENĖ Birutė POCIŪTĖ Gintautas VALICKAS Žodynas parengtas įgyvendinant Europos socialinio fondo remiamą projektą „Pripažįstamos kvalifikacijos neturinčių psichologų tikslinis perkvalifikavimas pagal Vilniaus universiteto bakalauro ir magistro studijų programas – VUPSIS“ (2011 m. rugsėjo 29 d. sutartis Nr. VP1-2.3.- ŠMM-04-V-02-001/Pars-13700-2068). Pirminis žodyno variantas (1999–2010 m.) rengtas Vilniaus universiteto Specialiosios psichologijos laboratorijos lėšomis. ISBN 978-609-459-226-3 © Albinas Bagdonas, 2013 © Eglė Rimkutė, 2013 © VU Specialiosios psichologijos laboratorija, 2013 © Vilniaus universitetas, 2013 PRATARMĖ Sparčiai plėtojantis globalizacijos proce- atvejus, kai jų vertimas į lietuvių kalbą gali sams, informacinėms technologijoms, ne- kelti sunkumų), tik tam tikroms socialinėms išvengiamai didėja ir anglų kalbos, kaip ir etninėms grupėms būdingų žodžių, slengo,
    [Show full text]
  • Hemispheric Brain Asymmetry Differences in Youths with Attention
    NeuroImage: Clinical 18 (2018) 744–752 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Hemispheric brain asymmetry differences in youths with attention-deficit/ T hyperactivity disorder ⁎ P.K. Douglasa,b, , Boris Gutmanc, Ariana Andersonb, C. Lariosa, Katherine E. Lawrenced, Katherine Narrd, Biswa Senguptae, Gerald Cooraye, David B. Douglasf, Paul M. Thompsonc, James J. McGoughb, Susan Y. Bookheimerb a University of Central Florida, IST, Modeling and Simulation Department, FL, USA b Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, CA, USA c Imaging Genetics Center, USC Keck School of Medicine, Marina del Rey, CA, USA d Laboratory of Neuroimaging, UCLA, CA, USA e Wellcome Trust Centre for Neuroimaging, 12 Queen Square, UCL, London, UK f Nuclear Medicine and Molecular Imaging, Stanford University School of Medicine, Palo Alto, CA, USA ABSTRACT Introduction: Attention-deficit hyperactive disorder (ADHD) is the most common neurodevelopmental disorder in children. Diagnosis is currently based on behavioral criteria, but magnetic resonance imaging (MRI) of the brain is increasingly used in ADHD research. To date however, MRI studies have provided mixed results in ADHD patients, particularly with respect to the laterality of findings. Methods: We studied 849 children and adolescents (ages 6–21 y.o.) diagnosed with ADHD (n = 341) and age- matched typically developing (TD) controls with structural brain MRI. We calculated volumetric measures from 34 cortical and 14 non-cortical brain regions per hemisphere, and detailed shape morphometry of subcortical nuclei. Diffusion tensor imaging (DTI) data were collected for a subset of 104 subjects; from these, we calculated mean diffusivity and fractional anisotropy of white matter tracts.
    [Show full text]
  • A Cinch for the Brain
    A Cinch for the Brain Our bodies, our behavior and even our brains are anything but symmetrical. And this seems to be an important factor in the seamless functioning of our thought, speech and motor faculties. Researchers at the Max Planck Institute for Psycholinguistics in Nijmegen are currently searching for genetic clues to this phenomenon. They want to decode the fundamental molecular biological mechanisms that contribute to asymmetry in the brain, and to identify possible causes for neurological disorders. TEXT STEFANIE REINBERGER t first glance, the human ture. It’s divided into two halves, both A strong left: Rafael Nadal, for body appears to be com- of which are equal in size and whose many years the world’s number pletely symmetrical: two furrows and bulges follow a similar pat- one men’s tennis player, is right-handed but holds the arms, two legs, two eyes, tern. But the functional centers are ex- racket in his left hand most of two ears. Even features tremely unevenly distributed. The right the time. Researchers are likeA the nose and mouth appear to be and left hemispheres specialize in dif- studying how the brains of left- evenly positioned in both halves of ferent cognitive functions. They essen- and right-handed people differ. the face in most people. On closer in- tially divide up the work between them, spection, though, we see that one leg possibly to expand the total range of is longer than the other, one hand is tasks performed. stronger, or maybe the left ear is posi- “Lateralization is a very distinct phe- tioned lower than the right one.
    [Show full text]
  • Handedness and White Matter Networks
    NROXXX10.1177/1073858420937657The NeuroscientistBudisavljevic et al. 937657review-article2020 Review The Neuroscientist 2021, Vol. 27(1) 88 –103 Handedness and White Matter Networks © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI:https://doi.org/10.1177/1073858420937657 10.1177/1073858420937657 journals.sagepub.com/home/nro Sanja Budisavljevic1,2, Umberto Castiello1 , and Chiara Begliomini1 Abstract The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research. Keywords handedness, white matter, diffusion imaging, tractography, corpus callosum, corticospinal tract, superior longitudinal fasciculus Introduction dominant for hand control.
    [Show full text]
  • Role of Primary Care Optometrists in the Assessment and Management of Patients with Traumatic Brain Injuries in Canada
    CANADIAN JOURNAL of OPTOMETRY | REVUE CANADIENNE D’OPTOMÉTRIE EST. 1939 VOLUME 80 NUMBER 1 CLINICAL RESEARCH Role of Primary Care Optometrists in the Assessment and Management of Patients with Traumatic Brain Injuries in Canada CLINICAL RESEARCH INNOVATIONS PRACTICE MANAGEMENT Pituitary Tumor Associated The Model T Trends in Health Professions: with Situs Inversus of and a Peek Behind Disclosure of Records the Optic Nerve Head the Curtain? to Third Parties Publications Mail Agreement No. 40063055 CANADIAN JOURNAL of OPTOMETRY REVUE CANADIENNE D’OPTOMÉTRIE Vol 80, No 1 CANADIAN JOURNAL of OPTOMETRY | REVUE CANADIENNE D’OPTOMÉTRIE Spring/Printemps 2018 EST. 1939 VOLUME 80 NUMBER 1 ISSN 0045-5075 The Canadian Journal of Optometry is the official CONTENTS publication of the Canadian Association of EDITORIAL/ÉDITORIAL Optometrists (CAO) / La Revue canadienne 5 Stanley Woo, OD, MS, MBA, FAAO, Director d’optométrie est la publication officielle de 9 Stanley Woo, D.O., M.Sc., M.B.A., F.A.A.O., Directeur l’Association canadienne des optométristes (ACO) : 234 Argyle Avenue, Ottawa ON, K2P 1B9. Phone 613 C CLINICAL RESEARCH 235-7924 / 888 263-4676, fax 613 235-2025, e-mail [email protected], website www.opto.ca. Publications RESEARCH/RECHERCHE Mail Registration No. 558206 / Envoi de publication 13 – Enregistrement no 558206. Role of Primary Care Optometrists in the Assessment and The Canadian Journal of Optometry / La Revue Management of Patients with Traumatic Brain Injuries in Canada canadienne d’optométrie (USPS#0009-364) is Zoe Lacroix, O.D., Susan J. Leat, PhD, FCOptom, F.A.A.O., published four times per year. Lisa W.
    [Show full text]
  • Subtle Left-Right Asymmetry of Gene Expression Profiles in Embryonic
    bioRxiv preprint doi: https://doi.org/10.1101/263111; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Subtle left-right asymmetry of gene 2 expression profiles in embryonic and 3 foetal human brains 4 5 Carolien G.F. de Kovel1, Steven N. Lisgo2, Simon E. Fisher1,3, Clyde Francks1,3* 6 7 1 Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The 8 Netherlands 9 2 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom 10 3 Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands 11 12 13 Contact information: 14 Clyde Francks 15 Dept Language & Genetics, Max Planck Institute for Psycholinguistics 16 P.O. Box 310 17 6500 AH Nijmegen 18 The Netherlands 19 E: [email protected] 20 T: +31 24 3521929 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/263111; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 Abstract 25 Left-right laterality is an important aspect of human brain organization for which the genetic basis is 26 poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided 27 samples from several structures of the anterior central nervous systems of post mortem human 28 embryos and fetuses.
    [Show full text]
  • Evidence from Intrinsic Activity That Asymmetry of the Human Brain Is Controlled by Multiple Factors
    Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors Hesheng Liua, Steven M. Stufflebeama,b, Jorge Sepulcrea,c,d, Trey Heddena,c, and Randy L. Bucknera,c,d,e,1 aAthinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129; bHarvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139; cHarvard University Department of Psychology, Center for Brain Science, Cambridge, MA 02138; dHoward Hughes Medical Institute, Cambridge, MA 02138; and eDepartment of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129 Edited by Marcus E. Raichle, Washington University School of Medicine, St. Louis, MO, and approved October 12, 2009 (received for review July 18, 2009) Cerebral lateralization is a fundamental property of the human Here we show strong evidence that multiple factors associate brain and a marker of successful development. Here we provide with asymmetry of distinct brain systems and provide a method evidence that multiple mechanisms control asymmetry for distinct to measure the degree of lateralization of each of these factors brain systems. Using intrinsic activity to measure asymmetry in 300 in individual subjects. We first developed an approach to quan- adults, we mapped the most strongly lateralized brain regions. tify functional laterality based on intrinsic activity fluctuations Both men and women showed strong asymmetries with a signif- using fMRI (23, 24). Factor analysis was then performed to icant, but small, group difference. Factor analysis on the asymmet- explore whether all lateralized brain systems arise from a ric regions revealed 4 separate factors that each accounted for common factor or through multiple, distinct factors.
    [Show full text]
  • The Brain's Asymmetric Frequency Tuning
    S S symmetry Opinion The Brain’s Asymmetric Frequency Tuning: Asymmetric Behavior Originates from Asymmetric Perception Arianna Felisatti 1,*, David Aagten-Murphy 1,2, Jochen Laubrock 1,3, Samuel Shaki 4 and Martin H. Fischer 1 1 Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25 House 14, D-14476 Potsdam OT Golm, Germany; [email protected] (D.A.-M.); [email protected] (J.L.); [email protected] (M.H.F.) 2 Neuraltrain GmbH, Friedrichstr. 68, 10117 Berlin, Germany 3 Department of Psychology, Brandenburg Medical School Theodor Fontane Fehrbelliner Straße 38, 16816 Neuruppin, Germany 4 Department of Behavioral Sciences and Psychology, Ariel University, Ariel 40700, Israel; [email protected] * Correspondence: [email protected]; Tel.: +49-331-977-2895 Received: 11 September 2020; Accepted: 10 December 2020; Published: 15 December 2020 Abstract: To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss
    [Show full text]