Measurement of Time

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of Time Measurement of Time M.Y. ANAND, B.A. KAGALI* Department of Physics, Bangalore University, Bangalore 560056 *email: [email protected] ABSTRACT Time was historically measured using the periodic motions of the sun and stars. Various types of sun clocks were devised in Egypt, Greece and Europe. Different types of water clocks were assembled with ever greater accuracy. Only in the seventeenth century did the mechanical clock with pendulums and springs appeared. Accurate quartz clocks and atomic clocks were developed in the first half of the twentieth century. Now we have clocks that have better than microsecond accuracy. This article gives a brief account of all these topics. Keywords: Sun clocks, Water clocks, Mechanical clocks, Quartz clocks, Atomic clocks, World Time, Indian Standard time We all know intuitively what time is. It can be civilizations relied upon the apparent motion of roughly equated with change or motions. From these bodies through the sky to determine the very beginning man has been interested in seasons, months, and years. understanding and measuring time. More We know little about the details of recently, he has been looking for ways to limit timekeeping in prehistoric eras, but we find the “damaging” effects of time and going that in every culture, some people were backward in time! preoccupied with measuring and recording the Celestial bodies—the Sun, Moon, planets, passage of time. Ice-age hunters in Europe over and stars—have provided us a reference for 20,000 years ago scratched lines and gouged measuring the passage of time. Ancient holes in sticks and bones, possibly counting the Physics Education • January − March 2007 277 days between phases of the moon. Five Peoples of various civilizations have been thousand years ago, Sumerians in the Tigris- interested in determining time with ever greater Euphrates valley in today's Iraq had a calendar accuracy as they progressed. that divided the year into 30 day months, divided the day into 12 periods, and divided these periods into 30 parts. We have no written Sun Clocks records of Stonehenge, built over 4000 years Egyptians were apparently the formally divided ago in England, but its alignments show its their day into parts something like our hours. purposes apparently included the determination Obelisks (slender, tapering, four-sided of seasonal or celestial events, such as lunar monuments) were built as early as 3500 BCE eclipses, solstices and so on. (see Figure.1). Their moving shadows formed a kind of sundial, enabling people to partition the day into morning and afternoon. Obelisks also showed the year’s longest and shortest days when the shadow at noon was the shortest or longest of the year. Later, additional markers around the base of the monument would indicate further subdivisions of time. The earliest Egyptian calendar was based on the moon's cycles, but later the Egyptians realized that the “Dog Star” in Canis Major, which we call Sirius, rose next to the sun every 365 days, about when the annual inundation of the Nile began. Based on this knowledge, they devised a 365 day calendar that seems to have begun around 3100 BCE(Before the Common Era). In ancient India time was measured in terms of respirations. The time required in pronouncing ten long syllables (Gurvakshara) Figure 1. was called a respiration. Six respirations made up one vinadi( period Another Egyptian shadow clock or sundial, of twenty four seconds), 60 vinadis made one possibly the first portable timepiece, came into nadi and 60 nadis made one day. use around 1500 BCE. This device divided a The Puranic version of the day was sunlit day into 10 parts plus two “twilight measured by taking 15 twinklings (nimesha) as hours” in the morning and evening. When the equal to one bit (kashtha), 30 bits making one long stem with 5 variably spaced marks was minute (kala). Thirty minutes made one hour oriented east and west in the morning, an (muhurta) and 30 hours made one day. elevated crossbar on the east end cast a moving 278 Physics Education • January − March 2007 shadow over the marks. At noon, the device associated with the internal workings of atoms was turned in the opposite direction to measure as their regulators. the afternoon “hours.” The merkhet, the oldest known 2) a means of keeping track of the astronomical tool, was an Egyptian increments of time and displaying the result. development of around 600 BCE. A pair of Our ways of keeping track of the passage of merkhets was used to establish a north-south time include the position of clock hands and line (or meridian) by aligning them with the digital time displays. Pole Star. They could then be used to mark off The history of timekeeping is the story of nighttime hours by determining when certain the search for ever more consistent actions or other stars crossed the meridian. processes to regulate the rate of a clock. In the quest for better year-round accuracy, sundials evolved from flat horizontal or vertical plates to more elaborate forms. One Water Clocks version was the hemispherical dial, a bowl- Water clocks were among the earliest shaped depression cut into a block of stone, timekeepers that didn't depend on the carrying a central vertical gnomon (pointer) observation of celestial bodies. One of the and scribed with sets of hour lines for different oldest was found in the tomb of the Egyptian seasons. pharaoh Amenhotep I, buried around 1500 The hemicycle, said to have been invented BCE. Later named clepsydras (“water about 300 BCE, removed the useless half of the thieves”) by the Greeks, who began using them hemisphere to give an appearance of a half- about 325 BCE, these were stone vessels with bowl cut into the edge of a squared block. By sloping sides that allowed water to drip at a 30 BCE, Vitruvius could describe 13 different nearly constant rate from a small hole near the sundial styles in use in Greece, Asia Minor, bottom. Other clepsydras were cylindrical or and Italy. bowl-shaped containers designed to slowly fill with water coming in at a constant rate. Markings on the inside surfaces measured the Elements of a Clock passage of “hours” as the water level reached Before we consider the different ways them. These clocks were used to determine employed to mark the passage of time, we hours at night, but may have been used in should broadly define what constitutes a clock. daylight as well. Another version consisted of a All clocks must have two basic components: metal bowl with a hole in the bottom; when placed in a container of water the bowl would 1) a regular, constant or repetitive process fill and sink in a certain time. These were still or action to mark off equal increments of in use in North Africa in the 20th century. time. Early examples of such processes More elaborate and impressive mechanized included the movement of the sun across the water clocks were developed between 100 sky, candles marked in increments, oil lamps BCE and 500 CE by Greek and Roman with marked reservoirs, sand glasses horologists and astronomers. The added (hourglasses), and in the Orient, knotted cords complexity was aimed at making the flow more and small stone or metal mazes filled with constant by regulating the pressure, and at incense that would burn at a certain pace. providing fancier displays of the passage of Modern clocks use a balance wheel, pendulum, time (see Figure 2). Some water clocks rang vibrating crystal, or electromagnetic waves bells and gongs; others opened doors and Physics Education • January − March 2007 279 windows to show little figures of people, or escapement invented about 725 CE. The Su moved pointers, dials, and astrological models Sung clock tower, over 30 feet tall, possessed a of the universe. bronze power-driven armillary sphere for A Macedonian astronomer, Andronikos, observations, an automatically rotating celestial supervised the construction of his Horologion, globe, and five front panels with doors that known today as the Tower of the Winds, in the permitted the viewing of changing manikins Athens marketplace in the first half of the first which rang bells or gongs, and held tablets century BCE. This octagonal structure showed indicating the hour or other special times of the scholars and shoppers both sundials and day (see Figure 3). mechanical hour indicators. It featured a 24 Since the rate of flow of water is very hour mechanized clepsydra and indicators for difficult to control accurately, a clock based on the eight winds from which the tower got its that flow could never achieve excellent name, and it displayed the seasons of the year accuracy. People were naturally led to other and astrological dates and periods. The approaches. Romans also developed mechanized clepsydras, though their complexity accomplished little improvement over simpler methods for determining the passage of time. Figure 2. Figure 3. In the Far East, mechanized astronomical/ Before 2000 BCE, the Babylonians (in astrological clock making developed from 200 today’s Iraq) used a year of 12 alternating 29 to 1300 CE. Third-century Chinese clepsydras day and 30 day lunar months, giving a 354 day drove various mechanisms that illustrated year. In contrast, the Mayans of Central astronomical phenomena. One of the most America relied not only on the Sun and Moon, elaborate clock towers was built by Su Sung but also the planet Venus, to establish 260 day and his associates in 1088 CE. Su Sung’s and 365 day calendars. This culture and its mechanism incorporated a water-driven related predecessors spread across Central 280 Physics Education • January − March 2007 America between 2600 BCE and 1500 CE, no evidence or record of the working models reaching their apex between 250 and 900 CE.
Recommended publications
  • Grade 6 Quarter 1 Lessons Ycsd.Pdf
    Name__________________________________________________________________ th 6 Grade - Grading Period 1 Overview Ohio's New Learning Standards Minerals have specific, quantifiable properties. (6.ESS.1) Igneous, Metamorphic, and Sedimentary rocks have unique characteristics that can be used for identification and/or classification. (6.ESS.2) Igneous, Metamorphic, and Sedimentary rocks form in different ways. (6.ESS.3) Clear Learning Targets "I can": 1. _____ follow a laboratory procedure and work collaboratively within a group using appropriate scientific tools. 2. _____ work individually, with a partner, and as a team to test a scientific concept, change a variable, and record the experimental outcome. 3. _____ use the engineering design cycle to develop a solution with a predictable outcome. 4. _____ cite specific text or online resource to support a proposed design solution. 5. ____ identify minerals by testing their properties 6. ____ use mineral properties, to use in testing and identifying minerals. 7. ____ use the rock cycle to describe the formation of igneous, sedimentary and metamorphic rocks. 8. ____ identify the unique characteristics to classify rocks. 9. ____ describe the formation of igneous, metamorphic, and sedimentary rocks 10. ____ use the unique characteristic of sedimentary rocks to identify and classify sedimentary rocks. 11. ____ identify the characteristics/classify metamorphic rocks. 12. ____ describe how metamorphic rocks form. Name_________________________________________________________________ th 6 Grade - Grading
    [Show full text]
  • Mini Quartz Clock Movements
    Mini Quartz Clock Movements • 10 Year Warranty • Step Second Hand • Dimensions: 2-1/8"W x 2-1/8"H x 5/8"D • Runs on 1 "AA" Size Battery • American "I" Shaft - Diameter 5/16" • Free Set Of Hands and • Front Loading Hanger Mounting Hardware With • Accurate Within 2 Minutes A Year Each Clock Movement • Fits 3" Diameter Hole • Made in USA 1. Drill a 3/8" hole through the material you are working with and insert the movement. 2. Slide brass washer over shaft. 3. Attach dial mounting hex nut. 4. Gently press hour hand onto shaft at 12:00 position. 5. Place minute hand over shaft at 12:00 position. 6. Gently screw minute nut in place. 7. Press on second hand at 12:00 position. 8. Screw on cap nut if no second hand is used. Mini Movements Shaft Length Selecting the Proper Shaft Length Dials B A P r i c e E a c h P e r P k g O f Proper shaft length is important to ensure Stock# up to Thread Total 1 3 10 50 100 sufficient clearance when going through your dial Q-11 1/8" thick 3/16" 17/32" 4.95 4.23 4.45 3.80 4.25 3.63 3.95 3.38 3.75 3.21 board and when using a glass front on your clock. Q-12 1/4" thick 5/16" 5/8" 4.95 4.23 4.45 3.80 4.25 3.63 3.95 3.38 3.75 3.21 Overall Length (A) is measured from the tip of Q-13 3/8" thick 7/16" 3/4" 4.95 4.See23 4.4 website5 3.80 4.25 3for.63 3current.95 3.38 3.75 3.21 the hand shaft to the movement cast.
    [Show full text]
  • Analog Clock Headway Movement FAQS
    ANALOG CLOCK HEADWAY MOVEMENT FAQS The links below will work in most PDF viewers and link to the topic area by clicking the link. We recommend Adobe Reader version 10 or greater available at: http://get.adobe.com/reader CONTENTS Analog Clock Headway Movement FAQS .................................................................... 1 Batteries ............................................................................................................................. 2 Atomic Clock Factory Restart ...................................................................................... 2 Supported Time Zones .................................................................................................. 2 Time is Incorrect ............................................................................................................. 2 Clock is incorrect by Hours but minutes are correct .......................................... 3 Daylight Saving Time ..................................................................................................... 3 Manually Set Time ........................................................................................................... 3 How long will the battery last? .................................................................................. 3 Can I shut off the WWVB signal? .............................................................................. 3 Is there a booster antenna to receive the WWVB signal in a difficult location? ............................................................................................................................
    [Show full text]
  • 77A71 Quartz Clock Movement Instructions
    77A71 07/28/94 Quartz Clock Movement Instructions Product #3722X, 3723X The 3622X and 3723X quartz battery movements will operate The 3723X movement has a start-stop switch on the rear of the approximately 12 months on a fresh “C” alkaline battery. Insert the case. Both movements feature a hand set knob on the rear of the battery with positive end to your left as movement is held upright case. Telephone time recordings are generally adequate for setting looking from the rear. the time. The 3722X and 3723X movements should keep time to +/- To mount the movement, insert the handshaft through the center 10 seconds per month. hole in your dial and fasten with the brass nut and brass washer. Be sure to use a fresh battery when you install your clock. If you are The hanger and one or more shims (rubber washer) may be neces- not sure, have it tested on a battery testing device. Do not attempt sary between the movement and the dial to control the distance that to disassemble the movement case for any kind of service. the handshaft protrudes through the dial. (See Diagram A) The adjustable pendulum on the 3722X adjustable pendulum Press the hour hand onto its shaft, making sure it does not rub movement has no bearing on the time keeping of the movement against the dial. The minute hand fits onto the threaded “I” shaft itself and can be adjusted by “breaking” the brass rod at the scored and is held by a small nut. The second hand (optional) may now be lines and then replacing the brass bob.
    [Show full text]
  • A Short Guide to Celestial Navigation5.16 MB
    A Short Guide to elestial Na1igation Copyright A 1997 2011 (enning -mland Permission is granted to copy, distribute and/or modify this document under the terms of the G.2 Free Documentation -icense, 3ersion 1.3 or any later version published by the Free 0oftware Foundation% with no ,nvariant 0ections, no Front Cover 1eIts and no Back Cover 1eIts. A copy of the license is included in the section entitled "G.2 Free Documentation -icense". ,evised October 1 st , 2011 First Published May 20 th , 1997 .ndeB 1reface Chapter 1he Basics of Celestial ,aEigation Chapter 2 Altitude Measurement Chapter 3 )eographic .osition and 1ime Chapter 4 Finding One's .osition 0ight Reduction) Chapter 5 Finding the .osition of an Advancing 2essel Determination of Latitude and Longitude, Direct Calculation of Chapter 6 .osition Chapter 7 Finding 1ime and Longitude by Lunar Distances Chapter 8 Rise, 0et, 1wilight Chapter 9 )eodetic Aspects of Celestial ,aEigation Chapter 0 0pherical 1rigonometry Chapter 1he ,aEigational 1riangle Chapter 12 )eneral Formulas for ,aEigation Chapter 13 Charts and .lotting 0heets Chapter 14 Magnetic Declination Chapter 15 Ephemerides of the 0un Chapter 16 ,aEigational Errors Chapter 17 1he Marine Chronometer AppendiB -02 ,ree Documentation /icense Much is due to those who first bro-e the way to -now.edge, and .eft on.y to their successors the tas- of smoothing it Samue. Johnson Prefa e Why should anybody still practice celestial naRigation in the era of electronics and 18S? 7ne might as Sell ask Shy some photographers still develop black-and-Shite photos in their darkroom instead of using a digital camera.
    [Show full text]
  • 18 TK Client DS
    SECURE ENTERPRISE TIME SYNC WHITEPAPER SERIES TimeKeeper’s Competitive Survey Introduction The TimeKeeper® suite of products are more accurate, more reliable and far more capable than CAPEX-free open source alternatives. TimeKeeper has a lower OPEX than alternatives, but more importantly, TimeKeeper has features found nowhere else. These features include the ability to verify time is correct, compare against many time sources, report when time is incorrect or when time sources fail, and much more. Standard logging and integration provide guarantees of accuracy whenever proof is needed in the future. Some TimeKeeper customers previously built large in-house projects to try to make alternative solutions fit their needs. These expensive and very limited solutions were abandoned once they saw TimeKeeper gave them all they needed and more out of the box, saving valuable time and resources. TimeKeeper in use TimeKeeper hardware and software is in use by financial institutions of all sizes, from exchanges and very throughout Wall Street & large investment banks to small “prop shops”. TimeKeeper is there because after rigorously evaluating the globally product, customers found it gave them capabilities they simply could not get anywhere else. In addition, TimeKeeper support is far better than any of the competition. A few comments from our customers: “KCG has been using TimeKeeper Client and Server Software for two years in our trading environment with great success. TimeKeeper delivers accurate time, and has helped us to reduce operational risk with its built-in failover and event notification. We use TimeKeeper Client Software on our servers, using NTP or PTP to sync them to our GPS Based TimeKeeper Servers.” – Steve Newman, Managing Director, Corporate IT and Infrastructure, KCG “Technology is readily accessible for synchronizing to the microsecond, and there is no excuse for not having this in place today.
    [Show full text]
  • DS1284/DS1286 Watchdog Timekeepers Are
    DS1284/DS1286 Watchdog Timekeepers www.maxim-ic.com GENERAL DESCRIPTION FEATURES The DS1284/DS1286 watchdog timekeepers are . Keeps Track of Hundredths of Seconds, self-contained real-time clocks, alarms, watchdog Seconds, Minutes, Hours, Days, Date of the timers, and interval timers in a 28-pin JEDEC DIP Month, Months, and Years; Valid Leap Year and encapsulated DIP package. The DS1286 Compensation Up to 2100 contains an embedded lithium energy source and a . Watchdog Timer Restarts an Out-of-Control quartz crystal, which eliminates the need for any Processor external circuitry. The DS1284 requires an external . Alarm Function Schedules Real-Time-Related quartz crystal and a VBAT source, which could be a Activities lithium battery. Data contained within 64 8-bit . Embedded Lithium Energy Cell Maintains registers can be read or written in the same manner Time, Watchdog, User RAM, and Alarm as byte-wide static RAM. Data is maintained in the Information watchdog timekeeper by intelligent control circuitry . Programmable Interrupts and Square-Wave that detects the status of VCC and write protects Outputs Maintain JEDEC Footprint memory when VCC is out of tolerance. The lithium . All Registers are Individually Addressable via energy source can maintain data and real time for the Address and Data Bus over 10 years in the absence of VCC. Watchdog . Accuracy is Better than ±1 Minute/Month at timekeeper information includes hundredths of +25°C (EDIP) seconds, seconds, minutes, hours, day, date, month, . Greater than 10 Years of Timekeeping in the and year. The date at the end of the month is Absence of VCC automatically adjusted for months with fewer than .
    [Show full text]
  • A Measure of Change Brittany A
    University of South Carolina Scholar Commons Theses and Dissertations Spring 2019 Time: A Measure of Change Brittany A. Gentry Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Philosophy Commons Recommended Citation Gentry, B. A.(2019). Time: A Measure of Change. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5247 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Time: A Measure of Change By Brittany A. Gentry Bachelor of Arts Houghton College, 2009 ________________________________________________ Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Philosophy College of Arts and Sciences University of South Carolina 2019 Accepted by Michael Dickson, Major Professor Leah McClimans, Committee Member Thomas Burke, Committee Member Alexander Pruss, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School ©Copyright by Brittany A. Gentry, 2019 All Rights Reserved ii Acknowledgements I would like to thank Michael Dickson, my dissertation advisor, for extensive comments on numerous drafts over the last several years and for his patience and encouragement throughout this process. I would also like to thank my other committee members, Leah McClimans, Thomas Burke, and Alexander Pruss, for their comments and recommendations along the way. Finally, I am grateful to fellow students and professors at the University of South Carolina, the audience at the International Society for the Philosophy of Time conference at Wake Forest University, NC, and anonymous reviewers for helpful comments on various drafts of portions of this dissertation.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS SECTION I ACCESS THE KRONOS TIMEKEEPER I-1 SECTION II POST ABSENCE/ATTENDANCE CODES IN KRONOS II-1 A. Absence Reports II-1 B. Absence/Attendance Pay Codes II-2 C. Teacher’s Full Time Equivalency (FTE) II-8 D. Absences Posted to an Employee in the Full Screen Editor II-10 E. Employee's Balances Viewed from the Full Screen Editor II-19 F. Absences Viewed from the History Module II-21 SECTION III EDIT TIME IN TIME EDITOR III-1 A. Time Editor II-1 B. Editing a Punch or Absence Record III-4 C. Add an In and Out Punch III-6 D. Insert a Single Punch or a Transfer Punch III-9 E. Delete a Line Item III-11 F. Delete a Single Punch III-13 G. Forcing Overtime / Comp Time III-15 H. Editing Student Activities Records III-17 I Viewing Available Positions III-19 J. View Time Clock Punch Detail in History Inquiry III-21 Reference Pages Options in the Time Editor III-23 Function Keys in the Time Editor III-24 Help Screens Within the Column Headings III-25 SECTION IV RUN REPORTS FROM REPORT MODULE IV-1 A. Employee Master IV-2 B. Punch Detail IV-4 C. Punch Detail with Exceptions Only IV-8 D. Punch Detail Summary by Position Number IV-12 E. Punch Detail by Pay Codes IV-15 F Time Card Report IV-18 G. Total Hours IV-22 H. Approaching Overtime Report IV-24 I. Employee Accrual Report IV-26 Section II-1 Revised 7/23/2015 Revised SECTION V PRINT REPORTS FROM WORK SPOOL FILE V-1 A.
    [Show full text]
  • Time and Frequency Users' Manual
    ,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]
  • From Sundials to Atomic Clocks
    2 I. THE RIDDLE OF TIME 1. The Riddle of Time 3 The Nature of Time 4 What Is Time? 5 Date, Time Interval, and Synchronization 6 Ancient Clock Watchers 7 Clocks in Nature 9 Keeping Track of the Sun and Moon 10 Thinking Big and Thinking Small-An Aside on Numbers 12 2. Everything Swings 15 Getting Time from Frequency 17 What Is a Clock? 19 The Earth-Sun Clock 20 Meter Sticks to Measure Time 22 What Is a Standard? 23 How Time Tells Us Where in the World We Are 24 Building a Clock that Wouldn’t Get Seasick 26 3 P Chapter C m234567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 It’s present everywhere, but occupies no space. We can measure it, but we can’t see it, touch it, get rid of it, or put it in a container. Everyone knows what it is and uses it every day, but no one has been able to define it. We can spend it, save it, waste it, or kill it, but we can’t destroy it or even change it, and there’s never any more or less of it. F “SE WE USE IT EVERY DAY! BUT WHAT 4 All of these statements apply to time. Is it any wonder that scientists like Newton, Descartes, and Einstein spent years studying, thinking about, arguing over, and trying to define time-and still were not satisfied with their answers? Today’s scientists have done no better.
    [Show full text]