29733 MBNL2 Antibody

Total Page:16

File Type:pdf, Size:1020Kb

29733 MBNL2 Antibody Revision 1 C 0 2 - t MBNL2 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] 3 Support: 877-678-TECH (8324) 3 7 Web: [email protected] 9 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H Endogenous 41 Rabbit Q5VZF2 10150 ( ) g g p ( ) g Product Usage Information toxic RNA hairpins that sequester MBNLs in nuclear foci. This loss of available MBNLs causes an adult-to-fetal shift in alternative splicing patterns and ultimately results in Application Dilution respiratory and cardiac complications observed in DM patients (2,5). 1. Pascual, M. et al. (2006) Differentiation 74, 65-80. Western Blotting 1:1000 2. Konieczny, P. et al. (2014) Nucleic Acids Res 42, 10873-87. 3. Lee, K.Y. et al. (2013) EMBO Mol Med 5, 1887-900. Storage 4. Lee, K.S. et al. (2010) J Biol Chem 285, 33779-87. 5. Cho, D.H. and Tapscott, S.J. (2007) Biochim Biophys Acta 1772, 195-204. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity MBNL2 Antibody recognizes endogenous levels of total MBNL2 protein. This antibody does not cross-react with MBNL1 protein. Species Reactivity: Human Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly119 of human MBNL2 protein. Antibodies are purified by peptide affinity chromatography. Background Alternative splicing is a crucial biological process that promotes protein diversity and provides cells with an additional mechanism to regulate the expression of tissue-specific protein isoforms. Muscleblind-like proteins (MBNLs) are one such protein family responsible for tissue-specific alternative splicing regulation. MBNLs bind pre-mRNA through an evolutionarily conserved zinc finger domain, and act as either activators or repressors of splicing on specific pre-mRNA targets by promoting the inclusion or exclusion of exons (1). MBNLs are functionally antagonistic to CUG-BP and ETR-3-like factors (CELF proteins) that also control pre-mRNA splicing. The interplay between MBNL and CELF activity plays a key role in development, where predominant MBNL activity promotes adult differentiation, and predominant CELF activity promotes embryonic splicing patterns (1). Three MBNL homologs are expressed in humans (MBNL1, MBNL2, and MBNL3) that share similar structure and function, yet differ in their tissue- and developmental stage-specific expression patterns (2). MBNL1 is the predominant isoform in the majority of tissue, including muscle, and is therefore the most well characterized. MBNL2 is the predominant homolog in brain, and exhibits increased expression upon functional loss of MBNL1 in other tissue types, suggesting a compensatory role (3). MBNL3 appears to play a more specialized role, where it inhibits muscle differentiation in muscle precursor cells (4). Functional loss of MBNLs is observed in myotonic dystrophy (DM), where pathological repeats in the 3’-UTR of the myotonic dystrophy protein kinase (DMPK) gene or intron 1 of the cellular nucleic acid binding protein (CNBP) gene result in Species reactivity is determined by testing in at least one approved application (e.g., IMPORTANT: For primary antibodies recommended for western blotting applications, western blot). we recommend incubating the membrane with diluted antibody at 4°C with gentle shaking overnight. Please refer to the western blot protocol found on the product web page for the antibody-specific diluent recommendation. APPLICATIONS KEY WB: Western Blot IP: Immunoprecipitation IHC: Immunohistochemistry ChIP: Chromatin Immunoprecipitation IF: Immunofluorescence F: Flow Cytometry E-P: ELISA-Peptide Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc. Tween is a registered trademark of ICI Americas, Inc. CROSS-REACTIVITY KEY H: human M: mouse R: rat Hm: hamster Mk: monkey Vir: virus Mi: mink C: chicken Dm: D. melanogaster X: Xenopus Z: zebrafish B: bovine Dg: dog Pg: pig Sc: S. cerevisiae Ce: C. elegans Hr: horse All: all species expected https://www.cellsignal.com/datasheet.jsp?productId=29733&images=0&protocol=0 1/2 Revision 1 #29733 MBNL2 Antibody Limited Uses Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect. Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST's products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST's Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products. CSTLT_86_20200512 Orders: 877-616-CELL (2355) • [email protected] • Support: 877-678-TECH (8324) • [email protected] • Web: www.cellsignal.com https://www.cellsignal.com/datasheet.jsp?productId=29733&images=0&protocol=0 2/2.
Recommended publications
  • 82262967.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 19, 1478–1484, September 15, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.07.041 Report Key Features of the X Inactivation Process Are Conserved between Marsupials and Eutherians Shantha K. Mahadevaiah,1 Helene Royo,1 in situ hybridization (RNA FISH) [1] and semiquantitative John L. VandeBerg,2 John R. McCarrey,3 Sarah Mackay,4 reverse transcriptase-polymerase chain reaction (RT-PCR) and James M.A. Turner1,* [2] have concluded that the X chromosome of the marsupial 1MRC National Institute for Medical Research, Mill Hill, Monodelphis domestica (opossum) remains inactive during London NW7 1AA, UK spermiogenesis. However, Cot-1 RNA FISH has since been 2Department of Genetics, Southwest Foundation for shown to primarily detect silencing of repeat rather than Biomedical Research, San Antonio, TX 78227, USA coding X-linked sequences [16, 17], and RT-PCR cannot 3Department of Biology, University of Texas at San Antonio, discriminate between steady-state RNA levels and ongoing San Antonio, TX 78249, USA transcription. We therefore sought to reexamine male germline 4Division of Integrated Biology, Faculty of Biomedical & Life X silencing and its relationship to female XCI with a gene- Sciences, University of Glasgow, Glasgow G12 8QQ, specific RNA FISH approach. Scotland, UK For our analysis of XCI in the male germline, we selected ten genes distributed across the opossum X chromosome (Fig- ure 1A). We wished to compare X gene silencing in opossum Summary with that in mouse, in which MSCI and its maintenance have been well characterized [18, 19].
    [Show full text]
  • MBNL1 Regulates Essential Alternative RNA Splicing Patterns in MLL-Rearranged Leukemia
    ARTICLE https://doi.org/10.1038/s41467-020-15733-8 OPEN MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia Svetlana S. Itskovich1,9, Arun Gurunathan 2,9, Jason Clark 1, Matthew Burwinkel1, Mark Wunderlich3, Mikaela R. Berger4, Aishwarya Kulkarni5,6, Kashish Chetal6, Meenakshi Venkatasubramanian5,6, ✉ Nathan Salomonis 6,7, Ashish R. Kumar 1,7 & Lynn H. Lee 7,8 Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, 1234567890():,; targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A.Wefinally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins. 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 2 Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 3 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • A Large-Scale Genome-Wide Association Study of Epistasis Effects of Production Traits and Daughter Pregnancy Rate in U.S
    G C A T T A C G G C A T genes Article A Large-Scale Genome-Wide Association Study of Epistasis Effects of Production Traits and Daughter Pregnancy Rate in U.S. Holstein Cattle Dzianis Prakapenka 1, Zuoxiang Liang 1, Jicai Jiang 2, Li Ma 3 and Yang Da 1,* 1 Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; [email protected] (D.P.); [email protected] (Z.L.) 2 Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; [email protected] 3 Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; [email protected] * Correspondence: [email protected] Abstract: Epistasis is widely considered important, but epistasis studies lag those of SNP effects. Genome-wide association study (GWAS) using 76,109 SNPs and 294,079 first-lactation Holstein cows was conducted for testing pairwise epistasis effects of five production traits and three fertility traits: milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FPC), protein percentage (PPC), and daughter pregnancy rate (DPR). Among the top 50,000 pairwise epistasis effects of each trait, the five production traits had large chromosome regions with intra-chromosome epistasis. The percentage of inter-chromosome epistasis effects was 1.9% for FPC, 1.6% for PPC, 10.6% for MY, 29.9% for FY, 39.3% for PY, and 84.2% for DPR. Of the 50,000 epistasis effects, the number of significant effects with log10(1/p) ≥ 12 was 50,000 for FPC and PPC, and 10,508, 4763, 4637 and 1 for MY, FY, PY and DPR, Citation: Prakapenka, D.; Liang, Z.; respectively, and A × A effects were the most frequent epistasis effects for all traits.
    [Show full text]
  • Splice Junction Identification from RNA-Sequencing Data Shaojun Tang1,2,3,4 and Alberto Riva1,2*
    Tang and Riva BMC Bioinformatics 2013, 14:116 http://www.biomedcentral.com/1471-2105/14/116 SOFTWARE Open Access PASTA: splice junction identification from RNA-Sequencing data Shaojun Tang1,2,3,4 and Alberto Riva1,2* Abstract Background: Next generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA (Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and statistical methods to identify exon-intron junctions with high accuracy. Results: Comparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions. Conclusions: PASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data. Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides highly annotated output files containing detailed information about their location and characteristics. Accurate junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels, which will be performed by the remaining modules of the PASTA pipeline, still under development.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Identification of Protein Features Encoded by Alternative Exons Using Exon Ontology
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Identification of protein features encoded by alternative exons using Exon Ontology Léon-Charles Tranchevent,1 Fabien Aubé,1 Louis Dulaurier,1 Clara Benoit-Pilven,1 Amandine Rey,1 Arnaud Poret,1 Emilie Chautard,2 Hussein Mortada,1 François-Olivier Desmet,1 Fatima Zahra Chakrama,1 Maira Alejandra Moreno-Garcia,1 Evelyne Goillot,3 Stéphane Janczarski,1 Franck Mortreux,1 Cyril F. Bourgeois,1,4 and Didier Auboeuf1,4 1Université Lyon 1, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France; 2Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, INRIA Erable, Villeurbanne, F-69622, France; 3Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, F-69007 France Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing var- iation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named Exon Ontology, based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encod- ed protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splic- ing.
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]
  • Towards Personalized Medicine in Psychiatry: Focus on Suicide
    TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms.
    [Show full text]
  • The Influence of X Chromosome Variants on Trait Neuroticism
    bioRxiv preprint doi: https://doi.org/10.1101/401166; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The influence of X chromosome variants on trait neuroticism Michelle Luciano 1*, Gail Davies 1, Kim M Summers 2, W David Hill 1, Caroline Hayward 3,, David C Liewald1, David J Porteous 4, Catharine R. Gale 1,5, Andrew M McIntosh 1,6, Ian J Deary 1 1 Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK 2 Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Australia 3 MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 4 Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/401166; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 5 MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK. 6 Division of Psychiatry, University of Edinburgh, Edinburgh, UK *Corresponding author: [email protected], Department of Psychology, The University of Edinburgh, 7 George Square, EH8 9JZ, Edinburgh, UK 2 bioRxiv preprint doi: https://doi.org/10.1101/401166; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Parental-To-Embryo Switch of Chromosome Organization in Early
    Parental-to-embryo switch of chromosome organization in early embryogenesis Samuel Collombet, Noemie Ranisavljevic, Takashi Nagano, Csilla Varnai, Tarak Shisode, Wing Leung, Tristan Piolot, Rafael Galupa, Maud Borensztein, Nicolas Servant, et al. To cite this version: Samuel Collombet, Noemie Ranisavljevic, Takashi Nagano, Csilla Varnai, Tarak Shisode, et al.. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature, Nature Pub- lishing Group, 2020, 580, pp.142 - 146. 10.1038/s41586-020-2125-z. hal-03027197 HAL Id: hal-03027197 https://hal.archives-ouvertes.fr/hal-03027197 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Parental-to-embryo switch of chromosome organization in early embryogenesis https://doi.org/10.1038/s41586-020-2125-z Samuel Collombet1,2,10, Noémie Ranisavljevic1,3,10, Takashi Nagano4,9,10, Csilla Varnai4,5, Tarak Shisode6, Wing Leung4,9, Tristan Piolot1, Rafael Galupa1,2, Maud Borensztein1, Received: 3 April 2019 Nicolas Servant7, Peter Fraser4,8,11 ✉, Katia Ancelin1,11 ✉ & Edith Heard1,2,11 ✉ Accepted: 16 January 2020 Published online: 25 March 2020 Paternal and maternal epigenomes undergo marked changes after fertilization1. Recent Check for updates epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifcations2–4 and diferences in chromosome organization and accessibility, both in gametes5–8 and after fertilization5,8–10.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]