Vation Is Left As an Cise
408 Chapter 9 Gas Power Systems 70 60 ~ I=" 50 ,:; u 40 'u"'" .....!.::: 30 0;" E 20 ~ ~ 10 0 5 10 15 20 .... Figure 9.6 Thermal efficiency of the cold air· Compression ralio, r standard Diesel cycle, k = 1.4. where r is the compression ratio and rc the cutoff ratio. The derivation is left as an cise. This relationship is shown in Fig. 9,6 for k = 1.4. Equation 9.13 for the Diesel differs from Eq. 9.8 for the Otto cycle only by the term in brackets, which for " > greater than unity. Thus, when the compression ratio is the same, the thermal the cold air-standard Diesel cycle would be less than that of the cold air-standard cycle. In the next example, we illustrate the analysis of the air-standard Diesel cycle. 1 II. I Q., ~ h 'I ....., ~',"1""": " .} ....I.-J,. l_ L ' ...... h,. "L b~ f .... l. Qt\VJ(",. / 'I".... tl.. ? r -J L...,.., U I'~J l.'''''/',; 1;1' J ... ,," j.,,>-I. '" At the beginning of the compression process of an air-standard Diesel cycle operating with a compression ratio of 18 , the perature is 300 K and the pressure is 0.1 MPa. The cutoC:( ratio for the cycle is 2. Determine (a) the temperature and at the end of each process of the cycle, (b) the thermal ' fficiency, (c) the mean effective pressure, in MPa. SOLUTION f'{UW ~ ' .... m c ..'( J ;(....clv4.. 'j ....;Y'\ j~..ll ~ ; ......'c.. Known: An air-standard Diesel cycle is executed with specified conditions at the beginning of the compression stroke.
[Show full text]