A Closer Look at Ants What Is an Ant?

Total Page:16

File Type:pdf, Size:1020Kb

A Closer Look at Ants What Is an Ant? A closer look at ants What is an ant? An ant is an insect. It has two antennae, a segmented body and six legs. Can you spot them on this picture? Not all ants will have sting because ants differ on how they defend themselves. Answer: What do ants do? https://www.bbc.co.uk/teach/class-clips-video/inside-an-ant- colony/z4crkmn Watch the video to find out what goes on in a colony. Ants live together in big groups called colonies. Some colonies have millions of ants. Each colony has a Queen ant. Her job is to lay eggs which keeps the colony thriving. The other ants all have their own special jobs to keep the colony running properly. There are soldier ants to defend the queen and the colony. These ants also gather food. There are worker ants. These ants look after the queen, the eggs and the larvae. Some cool ant facts! Ants can life 20 times their own weight. That means if a year 2 child was an ant, they would be strong enough to lift up a car! Ants do not have ears. The ‘hear’ by feeling vibrations in the ground through their feet so ants listen with their feet! When soldier ants fight, it is usually to the death! Ants that look for food leave an trail that other ants can sense. This means that lots of ants from the colony can find their way to the food source. Queen ants have wings. When they start a new colony they will lose their wings. Where do ants live? Ant colonies are usually underground. Ants live all over the world, there are more than 20 000 species of ant. The ants will look different depending on where they live. Meet the black garden ant Black garden ants are found in our gardens and countryside. Sometimes they will sneak into your house in the spring time. They cannot sting. The soldier ants use their mandibles (strong jaws) to defend their colonies. Size: Less than 1cm These ants build the nests underground. They like to Location: These ants live in the burrow into dry, slightly sandy soil. soil so they will live all over the world. You may have seen them in your garden. Meet the carpenter ant Carpenter ants build their nests in wood. They prefer damp, mouldy wood. They enter through small cracks and dig out more tunnels as the colony grows in size. All the wood they dig out in piled outside the nest. Size: About one and half They like to eat insects, fats, meat and sugary food. centimetres. They especially like nectar from plants. Location: Carpenter ants lives in forests all over the world. They do not like dry environments. Meet the weaver ants These ants have adapted to live above the ground. These ants use a special type of silk to join leaves in the trees together to create their colony. Size: About 1cm They can also live in roofs or along telegraph poles. Location: These ants are usually found in Australia and south east Asia. Meet the honeypot ant Honeypot ants have incredible abdomens! They are living honey jars. Some of the ants in these colonies will stuff themselves with food for the colony. They look after the food for when it is needed in the colony. Honeypot ants love to eat nectar from flowers. Size: About 1cm but much larger when full of nectar! In some places in the world, honeypot ants are eaten by people. They are a delicacy and taste like sweets! Location: Australia, Mexico, Western America, South Africa and New Guinea. Meet the ghost ant Ghost ants are teeny tiny and coloured black with white abdomens. Ghost ants are so small that no one really knows where they come from or how they have spread across the world because they are so difficult to Size: About 2mm see. Location: USA, Africa, Asia, South America and the Ghost ants will eat very similar foods to black Caribbean…maybe even more because they are so hard to garden ants. spot! Ghost ant colonies have more than one queen. Why are all these ants so different? Ants have to survive in lots of different places all over the world. Ants have adapted to the places they live so they can survive there and keep building their colonies. Adapted means that their bodies have changed over time so they can live in different places. Some ants need to have access to food when they can’t find it easily. Flowers only make nectar during the spring and summer so the honeypot ants have stretchy abdomens to store extra food. Some ants will need to survive in busy forests where lots of animals already live (like the weaver ants) so they need to find new places to build their colonies. Some ants need to survive extreme heat. The Saharan Silver ant has special body armour to protect it in the desert and it is the fastest ant on the planet. It’s over to you… Today you will be thinking of your own ant adaptation and drawing it to show how it is different from an everyday ant you might find in your garden . Remember your ants are still insects so they will all need to have: - 2 antennae - A segmented body (head, thorax and abdomen) - 6 legs Before you begin: Think of where your ant will live. What will the ant need to survive there? Draw your ant and label it with its adaptations. Here is an example of an ant design. I have decided that it will live in the Arctic which is a very cold place. I have added some things to my ant which I think will help it to survive..
Recommended publications
  • Comparison Between the Microbial Diversity in Carpenter Ant (Camponotus) Gut and Weaver Ant (Oecophylla) Gut
    Hosmath & Timmappa J Pure Appl Microbiol, 13(4), 2421-2436 | December 2019 Article 5857 | https://doi.org/10.22207/JPAM.13.4.58 Print ISSN: 0973-7510; E-ISSN: 2581-690X RESEARCH ARTICLE OPEN ACCESS Comparison Between the Microbial Diversity in Carpenter Ant (Camponotus) Gut and Weaver Ant (Oecophylla) Gut Kirti Shivayogi Hosmath and Shivasharana Chandrabanda Timmappa* Department of Microbiology and Biotechnology, Karnatak University, Dharwad, Karnataka, India. Abstract Aim to study the whole genome of cultured and uncultured microbes present within the ant gut environment can only be determined by using the advanced technology used is Next-generation sequencing (NGS) tool. Here' in this research' this tool is been used to study the exact composition or population of gut microbes present in the two ants are: Carpenter ant (genus Camponotus) and Weaver ant (genus Oecophylla), by 16S/18S/ITS rDNA amplicon sequencing and comparing whether these two ants have same microbial species and same composition, if yes then what is their percentage of abundance in these ants gut and how these microbial diversity play role in these ants life cycle. And from this ant gut study, which is performed by metagenomic tools, revealed the presence of large diversity of microbes in these ant gut and are from the order and genus of bacteria commonly found are Actinomycetales, Bifidobacteriales, Actinobacteria, Bacteriodales, Flavobacteriales, Caulobacterales, Methanobacteriales, Lactobacillales, Clostridiales, Bradyrhizobacterium, Agrobacterium etc. here, the complete microbial diversity of Carpenter and Weaver ant guts are studied by performing 16S / 18S / ITS rDNA amplicon sequencing procedure, which includes, surface sterilization, dissection, culturing in basic media broth, genomic DNA extraction, quality control, rDNA variable region amplification, library construction, high-throughput sequencing, data analysis and identification of microbiome.
    [Show full text]
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • HOUSEHOLD ARTHROPODS Nuisance Household Jean R
    2015 Household Pests 2/22/2015 OVERVIEW Guidelines & Principles Groups of pests Public health pests HOUSEHOLD ARTHROPODS Nuisance Household Jean R. Natter Structural pests 2015 2 MANAGEMENT PRINCIPLES DETERMINE MANAGEMENT Define the problem Eradicate? Damage? Critter(s)? Control? ID the critter Manage? Pest? Tolerate? Dangerous? (people, pets, or structures?) Did it just stumble indoors? Verify: PNW Insect Management Handbook Appropriate management 3 4 CAPTURE THE CRITTER RECOMMENDATIONS Research-based management EPA says: Pest control materials must be labeled for that purpose * * * * * * * * * * (Common Sense Pest Control) No home remedies 5 6 Jean R. Natter 2015 Household Pests 1 2015 Household Pests 2/22/2015 PUBLIC HEALTH: BED BUGS 3/16” Broadly flat, oval Cracks, crevices, & PUBLIC HEALTH PESTS seams (naturephoto.cz.com) Eggs glued in place Blood feeders (Bed Bugs; WSU; FS070E) Bites w/o pain Odor: sweet; acrid Bed Bugs (FS070E) 7 (J. R. Natter) 8 MANAGEMENT: BED BUGS PUBLIC HEALTH: MOSQUITOES Key Points Mattress: Encase or heat Rx Launder bedding, clothes – hot! Pest control company (NY Times) (L & R: University of Missouri; gambusia Stamford University) 9 10 MANAGEMENT: MOSQUITOES PUBLIC HEALTH: FLEAS Key Points Adults on animal Eggs drop off Source reduction Larvae ½” Personal protection w/tan head Mosquito fish (Gambusia), if legal Larvae eat debris Rx for larvae: Bti Pupa “waits” (Bacillus thuringiensis israelensis) Nest parasites (University of Illinois) 11 12 Jean R. Natter 2015 Household Pests 2 2015 Household Pests 2/22/2015 MANAGEMENT: FLEAS PUBLIC HEALTH: TICKS Rocky Mountain wood tick Key Points 3-step program Dermacentor species 1. Vacuum often East of Cascades 2. Insect growth regulator (IGR) Immatures feed mostly on carpet & pet’s “nest” on rodents 3.
    [Show full text]
  • Carpenter Ants
    DIVISION OF AGRICULTURE R E S E A R C H & E X T E N S I O N University of Arkansas System Agriculture and Natural Resources FSA7013 Carpenter Ants John D. Hopkins Identification Associate Professor and Carpenter ants (Figure 1) Extension Entomologist are among the largest of the common ants seen in Kelly M. Loftin Arkansas. They are a nuisance by their presence when found Associate Professor and inside the home. They do Extension Entomologist not eat wood, but remove quantities of it to expand their nest size, sometimes causing structural damage. Winged forms are called Figure 1. Carpenter ant (worker) alates with winged males being smaller than winged females. Wingless queens measure 5/8 inch, winged queens 3/4 inch, large major workers 1/2 inch and small minor workers 1/4 inch. Color varies with species ranging from black to red with some species being a combination of both. Workers are usually reddish­brown to black in coloration. Workers have large heads and a small thorax, while adult swarmers have a smaller head and large Figure 2. Carpenter ants have a single node on the thorax. The petiole has one petiole, and the thorax has a rounded upper node, and the profile of the surface. thorax, in workers only, has an evenly rounded upper surface (Figure 2). People sometimes confuse carpenter ants with termites. These ants usually nest in logs, Termite workers are small, 1/8 to stumps, hollow trees or decayed wood, 3/16 inch long, white and do not run but may be found nesting in sound freely over unexposed surfaces.
    [Show full text]
  • Carpenter Ants It an Ant Or Termite?" If You Are Still Unsure After Reading Methods
    CARPENTER ANT... Ants are social insects, living in groups Cornell Cooperative Extension called nests or colonies. They undergo U r b a n I P M P r o g r a m OR TERMITE, OR ...? complete metamorphosis, developing into Information Sheet No. 601 egg, larva, pupa, then adult. Colony members can be separated into groups The black carpenter ant (Camponotus pennsylvanicus) is called "castes" by the roles that they play in Integrated Pest often the species that damages houses in the Northeast. the colony's survival, such as reproductive References and Further Reading It has a single node (waist segment) and is 1/4 to more Management for or worker. than 1/2 inch long. It does not have a stinger, but it can The reproductives consist of the queen Klass, C. and D. Karasevicz. 1995. Pest bite. A frequently asked question about these ants is, "Is and the male ants. The male ants fertilize the queen during the ant's nuptial flight, Management Around the Home: Cultural Carpenter Ants it an ant or termite?" If you are still unsure after reading Methods. Miscellaneous Bulletin S74. Cornell the information below, consult Cornell Cooperative then die. The queen finds a secluded site, chews off her wings, and starts to build a Cooperative Extension, Ithaca, NY WHAT TO DO NOW Extension. colony. The queen cares for her first group Lifton, B. 1991. Bug Busters: Poison-Free Pest of offspring through the egg, larval, and Controls for Your House & Garden. Avery Identify the insect. If you are Antennae not “elbowed” pupal stages by herself.
    [Show full text]
  • Concentrates Against Stored Product Pests G Ready-To-Use Insecticides
    BÁBOLNA BIO Phone: +361 43-20-461, Fax: +361 43-20-401, e-mail: [email protected] CONTENTSCONTENTS INTRODUCTION RODENTICIDES G READY-TO-USE BAITS, PELLETS, WAX BLOCKS BAITING STATIONS FOR RODENT CONTROL INSECTICIDES G CONCENTRATES FOR CRAWLING INSECT CONTROL G IGR BASED CONCENTRATES ❍ FOR COCKROACH AND STORED PRODUCT PEST CONTROL ❍ FOR FLEA, STORED PRODUCT PEST AND MOSQUITO CONTROL ❍ FOR ECTOPARASITE CONTROL G CONCENTRATES AGAINST STORED PRODUCT PESTS G READY-TO-USE INSECTICIDES PESTICIDE SMOKE PRODUCTS TRAPS PHEROMONE TRAPS FOR AGRICULTURAL USE PHEROMONES FOR MONITORING FOR AGRICULTURAL USE BIRD CONTROL DEVICES SPRAYERS EQUIPMENT FOR MOSQUITO CONTROL PRODUCTS UNDER DEVELOPMENT BÁBOLNA BIO Phone: +361 43-20-461, Fax: +361 43-20-401, e-mail: [email protected] INTRODUCTIONINTRODUCTION The activities of Bábolna Bioenvironmental Centre look back to a past of more than 30 years. During this period of time the company has gained a leading role in the field of large scale pest control as well as in the production and sales of public health and household pest control products. The most outstanding success in the life of the company was the total deratization project of the city of Budapest and the maintenance of the rat-free state for 30 years now. The successful cockroach control carried out in 145,000 flats in housing estates can be considered as another outstanding result. To develop and manufacture up-to-date and efficient pest control products, BÁBOLNA BIO has established its own research and development laboratories, insecticide and rodenticide production and packaging plant. Besides the traditional formulations, the company gives high priority to the production of insecticide-free and pheromone insect traps.
    [Show full text]
  • Heart and SOLS Plant Partners Puppy Love
    Va\SaUR C[ 1 P \Y V YR Z T R R Q N \ P S SPRING : / 2008 V O [ R / _ N Y VOLUME 4 / ` NO. 1 R _ a P ` [ R N V [ P Q A Heart and SOLS 2 Plant Partners 2 2 Puppy Love 2 2 2 2 Contents Views on Twos Table of Contents This issue of the School of Life Sciences Magazine is going to make you see double, but only in the best ways: two book reviews, two tales of alumni, two views of life on earth, for example. We also offer you a new angle on the concept of the “dynamic duo,” in the article Heart and SOLS, which examines how the practice of science has evolved, and how couples, two pairs of scientists, successfully approach and carve Pup out careers and fulsome home lives together. py Lo So often wed to our culture of independent ve LS thought and action, it can be forgotten that SO duality or partnership offers a chance for nd rt a multiple perspectives, new creative avenues, ea rtners or, as with mentors and students, breaking H Plant Pa of new ground in research, thought, application, and art. Speaking of art, graphic artists Jacob Sahertian and his wife, Patricia, also a filmmaker, pair up to make our pages Multitalented Ray Lee, 2 sizzle with their shared creative synergy. So whether you love bugs, dogs, plants or Love Bugs, 4 science in general, we hope you love too (two) what ASU’s School of Life Sciences SOLS Publication Staff Space Views, 6 alumni, students, staff and faculty are Managing editor: Margaret Coulombe Heart And SOLS, 9 contributing through partnership with one Editorial board: Patty Duncan, Charles Kazilek another and our community.
    [Show full text]
  • Carnivory Is Positively Correlated with Latitude Among Omnivorous Mammals: Evidence from Brown Bears, Badgers and Pine Martens
    Ann. Zool. Fennici 46: 395–415 ISSN 0003-455X (print), ISSN 1797-2450 (online) Helsinki 18 December 2009 © Finnish Zoological and Botanical Publishing Board 2009 Carnivory is positively correlated with latitude among omnivorous mammals: evidence from brown bears, badgers and pine martens Egle Vulla1, Keith A. Hobson2, Marju Korsten1, Malle Leht3, Ants-Johannes Martin4, Ave Lind4, Peep Männil5, Harri Valdmann1 & Urmas Saarma1* 1) Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia (*corresponding authors’ e-mail: [email protected]) 2) Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada S7N 3H5 3) Department of Botany, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia 4) Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia 5) Centre of Forest Protection and Silviculture, Rõõmu tee 2, 51013 Tartu, Estonia Received 17 Nov. 2008, revised version received 4 May 2009, accepted 16 Mar. 2009 Vulla, E., Hobson, K. A., Korsten, M., Leht, M., Martin, A.-J., Lind, A., Männil, P., Valdmann, H. & Saarma, U. 2009: Carnivory is positively correlated with latitude among omnivorous mammals: evidence from brown bears, badgers and pine martens. — Ann. Zool. Fennici 46: 395–415. Omnivores exploit numerous sources of protein and other nutrients throughout the year, and meat is generally considered a high-quality resource. However, it is unknown if there is any general association between latitude and carnivorous behavior in omnivorous mammals. We examined the relative importance of meat and other dietary components, including anthropogenic food items, in the diet of brown bears (Ursus arctos) in Estonia using conventional scat- and stomach-content analyses as well as stable-isotope (δ15N, δ13C) analyses.
    [Show full text]
  • Winter Activity of Ants in Scots Pine Canopies in Borská Nížina Lowland (Sw Slovakia)
    Folia faunistica Slovaca 21 (3) 2016: 239–243 www.ffs.sk WINTER ACTIVITY OF ANTS IN SCOTS PINE CANOPIES IN BORSKÁ NÍŽINA LOWLAND (SW SLOVAKIA) 1 1 1 2 Milada Holecová , Mária Klesniaková , Katarína Hollá &1 Anna Šestáková Department of Zoology, Faculty of Natural Sciences, Comenius University, 2Ilkovičova 6, SK – 842 15 Bratislava, Slovakia [[email protected], [email protected], [email protected]] The Western Slovakia museum, Múzejné námestie 3, SK – 918 09 Trnava, Slovakia [[email protected]] Abstract: During the non-growing period (from mid-November 2014 to mid- March 2015), we studied epigeic activity of ants in Scots pine canopies. Ants were collected using pitfall traps situated at seven study plots in the Borská nížina lowland. A total of 12 species belonging to seven genera and twoFormica sub- polyctenafamilies were found. Two to six ant species were cumulatively recorded at the examined pine canopies during the non-growing period. The oligotope was the only species with epigeic activity during the whole study pe- riod. Low air temperatures and, consequently, the low soil temperatures com- bined with a weak insolation and strong shadowing inhibit the epigeic activity ofKey ants. words: epigeic activity, non-growing period, ants, Scots pine forests, SW Slovakia. INTRODUCTION peak activity when temperatures are relatively low for most ants, i.e., from freezing to ca. 15–20°C Temperature is considered to be one of the most important factors affecting foraging activity in (Talbot 1943a, 1943b, Bernstein 1979, Höll- ants. In the temperate regions, the majority of ant dobler & Taylor 1983, Lőrinczi 2016).
    [Show full text]
  • Carpenter Ants and Their Control
    Carpenter Ants and Their Control Of the approximately 100 different species of ants Carpenter Ant Habits found in Iowa, the most destructive are the carpenter Carpenter ants are social insects that live in colonies. ants. Most carpenter ants are large and shiny black, Each colony lives in a nest of large, irregular chambers although some species are dark brown or reddish and and tunnels excavated inside stumps, logs, hollow medium sized. These ants can cause major structural trees, dead limbs, posts, poles, porch columns, window damage when they tunnel in wood to construct their and door frames, building framing, and other wood. nests. Carpenter ants prefer wood that is naturally soft or wood that has been softened by decay (wood rot). Identifying Carpenter Ants Moisture and decay facilitate initial tunneling by Carpenter ants are some of the largest ants commonly the ants, but are not required for nesting. Nests may found in Iowa. They vary in length from 1/4 inch (6 extend into dry, sound lumber. Carpenter ants may mm) for the smallest worker to 3/4 inch (18 mm) for nest in existing cavities such as hollow doors or in a queen. All have constricted (i.e., wasplike) waists, spaces around windows and doors. elbowed antennae, and large abdomens, and some have wings (Figure 1). Unlike the nests of termites and wood-boring beetles, carpenter ant galleries are free of soil and debris, and Wingless worker carpenter ants are distinguished from are mostly free of sawdust. The walls of the nests other ant species by the smoothly arched shape of the are usually very smooth and clean.
    [Show full text]
  • Testing Impacts of Goal-Oriented Outreach with the Girl Scouts: Can a Single Activity Change Attitudes Toward Insects?
    © Journal of Higher Education Outreach and Engagement, Volume 25, Number 2, p. 151, (2021) Copyright © 2021 by the University of Georgia. eISSN 2164-8212 Testing Impacts of Goal-Oriented Outreach With the Girl Scouts: Can a Single Activity Change Attitudes Toward Insects? Andrew J. Mongue and Kaila L. Colyott Abstract Most people meet insects with fear and disgust, even though few insects pose health risks; in fact, many are beneficial and their absence would adversely affect human life. Such misunderstandings lead to insect conservation being important but unpopular. We addressed these concerns as part of a broader effort to establish an ongoing outreach partnership between graduate students at the University of Kansas and the Girl Scouts of Northeast Kansas/Northwest Missouri. To explore ways to advocate for insect conservation, we held an insect-collecting activity at a Girl Scout summer camp and surveyed changes in attitudes toward insects. This activity positively changed reactions to insect encounters and increased confidence in identifying harmful insects but did not strongly reduce fears or increase curiosity toward insects. Beyond these proximate results, this project highlights the potential of Girl Scout troops as targets for informal science education that can benefit both academics and the broader community. Keywords: university–community partnership, sustained collaboration, women in science, entomology nsects are among the most abundant In spite of, or more likely because of, this and diverse groups of organisms, familiarity, insects are profoundly unpopu- accounting for over half of modern lar with the general public in the United animal life on the planet (Foottit & States. One study found less than 10% of Adler, 2009).
    [Show full text]
  • Black Carpenter Ants in the Ozark Mountains of Arkansas: Relationships with Prescribed Fire, Site and Stand Variables, and Red Oak Borer
    BLACK CARPENTER ANTS IN THE OZARK MOUNTAINS OF ARKANSAS: RELATIONSHIPS WITH PRESCRIBED FIRE, SITE AND STAND VARIABLES, AND RED OAK BORER BLACK CARPENTER ANTS IN THE OZARK MOUNTAINS OF ARKANSAS: RELATIONSHIPS WITH PRESCRIBED FIRE, SITE AND STAND VARIABLES, AND RED OAK BORER A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology By ROBIN MICHELLE VERBLE University of Southern Indiana Bachelor of Science in Biophysics, 2006 August 2008 University of Arkansas ABSTRACT Black carpenter ants, Camponotus pennsylvanicus DeGeer, are nearly ubiquitous in eastern North American forests. These ants are documented as predators of red oak borer, Enaphalodes rufulus Haldeman, a native longhorn beetle that underwent an unprecedented population increase and decline in the oak hickory forests of the Ozark Mountains of Arkansas from the late 1990’s to 2005. My objective was to examine red oak borer emergence holes and site aspects and correlate these forest and tree attributes with presence or absence of black carpenter ants. Historic red oak borer population data, tree REP class and site aspects for 13 separate plots were used. At each site, all red oaks >10 cm DBH were baited for black carpenters ants using a mixture of tuna in oil and honey. Black carpenter ants are more likely to be found on trees with low levels of previous red oak borer infestation versus those trees with previously high levels of infestation. These results may suggest black carpenter ants play a role in controlling red oak borer populations. Distribution of black carpenter ants in red oaks prior to and during the outbreak is unknown.
    [Show full text]