Circuit Switching, Packet Switching, the Network Layer

Total Page:16

File Type:pdf, Size:1020Kb

Circuit Switching, Packet Switching, the Network Layer Data Communications & Networks Session 7 – Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources Computer Networking: A Top-Down Approach, 5/E Copyright 1996-2013 J.F. Kurose and K.W. Ross, All Rights Reserved 1 Agenda 1 Session Overview 2 Networks Part 1 3 Summary and Conclusion 2 What is the class about? Course description and syllabus: »http://www.nyu.edu/classes/jcf/csci-ga.2262-001/ »http://cs.nyu.edu/courses/Fall12/CSCI-GA.2262- 001/index.html Textbooks: » Computer Networking: A Top-Down Approach (6 th Edition) James F. Kurose, Keith W. Ross Addison Wesley ISBN-10: 0132856204, ISBN-13: 978-0132856201, 6th Edition (02/24/12) 3 Course Overview Computer Networks and the Internet Application Layer Fundamental Data Structures: queues, ring buffers, finite state machines Data Encoding and Transmission Local Area Networks and Data Link Control Wireless Communications Packet Switching OSI and Internet Protocol Architecture Congestion Control and Flow Control Methods Internet Protocols (IP, ARP, UDP, TCP) Network (packet) Routing Algorithms (OSPF, Distance Vector) IP Multicast Sockets 4 Course Approach Introduction to Basic Networking Concepts (Network Stack) Origins of Naming, Addressing, and Routing (TCP, IP, DNS) Physical Communication Layer MAC Layer (Ethernet, Bridging) Routing Protocols (Link State, Distance Vector) Internet Routing (BGP, OSPF, Programmable Routers) TCP Basics (Reliable/Unreliable) Congestion Control QoS, Fair Queuing, and Queuing Theory Network Services – Multicast and Unicast Extensions to Internet Architecture (NATs, IPv6, Proxies) Network Hardware and Software (How to Build Networks, Routers) Overlay Networks and Services (How to Implement Network Services) Network Firewalls, Network Security, and Enterprise Networks 5 Networks Part 1 Session in Brief Understand principles behind network layer services: Network layer service models Forwarding versus routing How a router works Instantiation, implementation in the Internet Conclusion 6 Icons / Metaphors Information Common Realization Knowledge/Competency Pattern Governance Alignment Solution Approach 77 Agenda 1 Session Overview 2 Networks Part 1 3 Summary and Conclusion 8 Networks Part 1 Agenda Introduction Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 9 Switching Networks Long distance transmission is typically done over a network of switched nodes Nodes not concerned with content of data End devices are stations Computer, terminal, phone, etc. A collection of nodes and connections is a communications network Data routed by being switched from node to node 10 Technology Two different switching technologies Circuit switching Packet switching 11 Simple Switched Network 12 Circuit Switching Dedicated communication path between two stations (during conversation) Three phases Establish Transfer Disconnect Must have switching capacity and channel capacity to establish connection Must have intelligence to work out routing 13 Circuit Switching - Issues Circuit switching is inefficient (designed for voice) Resources dedicated to a particular call Much of the time a data connection is idle Data rate is fixed Both ends must operate at the same rate Set up (connection) takes time Once connected, transfer is transparent 14 Packet Switching – Basic Operation Data transmitted in small packets Typically 1000 octets Longer messages split into series of packets Each packet contains a portion of user data plus some control info Control info Routing (addressing) info Packets are received, stored briefly (buffered) and passed on to the next node Store and forward 15 Use of Packets 16 Network layer application transport segment from transport network sending to receiving host data link physical on sending side network network data link data link network physical physical encapsulates segments data link physical network network into datagrams data link data link physical physical on receiving side, delivers network network data link data link segments to transport physical physical network data link layer physical application network transport network layer protocols in network data link network data link network physical data link every host, router physical data link physical router examines header physical fields in all IP datagrams passing through it 17 Two Key Network-Layer Functions forwarding: move analogy: packets from router’s input to routing: process of appropriate router planning trip from output source to dest routing: determine forwarding: process route taken by of getting through packets from source single interchange to dest. » routing algorithms 18 Interplay between routing and forwarding routing algorithm local forwarding table header value output link 0100 3 0101 2 0111 2 1001 1 value in arriving packet’s header 0111 1 3 2 19 Connection setup 3rd important function in some network architectures: » ATM, frame relay, X.25 before datagrams flow, two end hosts and intervening routers establish virtual connection » routers get involved network vs transport layer connection service: » network: between two hosts (may also involve intervening routers in case of VCs) » transport: between two processes 20 Network service model Q: What service model for “channel” transporting datagrams from sender to receiver? Example services for Example services for a individual flow of datagrams: datagrams: in-order datagram guaranteed delivery delivery guaranteed delivery guaranteed with less than 40 minimum bandwidth msec delay to flow restrictions on changes in inter- packet spacing 21 Network layer service models Guarantees ? Network Service Congestion Architecture Model Bandwidth Loss Order Timing feedback Internet best effort none no no no no (inferred via loss) ATM CBR constant yes yes yes no rate congestion ATM VBR guaranteed yes yes yes no rate congestion ATM ABR guaranteed no yes no yes minimum ATM UBR none no yes no no 22 Networks Part 1 Agenda Introduction Virtual circuit and datagram networks What’s inside a router IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 23 Network layer connection and connection-less service datagram network provides network-layer connectionless service VC network provides network-layer connection service analogous to the transport-layer services, but: » service: host-to-host » no choice: network provides one or the other » implementation: in network core 24 Virtual circuits “source-to-dest path behaves much like telephone circuit ” » performance-wise » network actions along source-to-dest path call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host address) every router on source-dest path maintains “state” for each passing connection link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service) 25 VC implementation a VC consists of: 1. path from source to destination 2. VC numbers, one number for each link along path 3. entries in forwarding tables in routers along path packet belonging to VC carries VC number (rather than dest address) VC number can be changed on each link. » New VC number comes from forwarding table 26 Forwarding table VC number 12 22 32 1 3 2 Forwarding table in interface northwest router: number Incoming interface Incoming VC # Outgoing interface Outgoing VC # 1 12 3 22 2 63 1 18 3 7 2 17 1 97 3 87 … … … … Routers maintain connection state information! 27 Virtual circuits: signaling protocols used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today’s Internet application 6. Receive data application transport 5. Data flow begins transport network 4. Call connected 3. Accept call network data link 1. Initiate call 2. incoming call data link physical physical 28 Datagram networks no call setup at network layer routers: no state about end-to-end connections » no network-level concept of “connection” packets forwarded using destination host address » packets between same source-dest pair may take different paths application application transport transport network network data link 1. Send data 2. Receive data data link physical physical 29 Forwarding table 4 billion possible entries Destination Address Range Link Interface 11001000 00010111 00010000 00000000 through 0 11001000 00010111 00010111 11111111 11001000 00010111 00011000 00000000 through 1 11001000 00010111 00011000 11111111 11001000 00010111 00011001 00000000 through 2 11001000 00010111 00011111 11111111 otherwise 3 30 Longest prefix matching PrefixMatch LinkInterface 11001000 00010111 00010 0 11001000 00010111 00011000 1 11001000 00010111 00011 2 otherwise 3 Examples DA: 11001000 00010111 00010110 10100001 Which interface? DA: 11001000 00010111 00011000 10101010 Which interface? 31 Datagram or VC network: why? Internet (datagram) ATM (VC) data exchange among evolved from telephony computers human conversation: » “elastic” service, no strict » strict timing, reliability timing req. requirements “smart” end systems » need for guaranteed (computers) service » can adapt, perform control, “dumb” end systems error recovery » telephones » simple inside network, complexity at “edge” » complexity inside network many link types » different characteristics
Recommended publications
  • Solutions to Chapter 2
    CS413 Computer Networks ASN 4 Solutions Solutions to Assignment #4 3. What difference does it make to the network layer if the underlying data link layer provides a connection-oriented service versus a connectionless service? [4 marks] Solution: If the data link layer provides a connection-oriented service to the network layer, then the network layer must precede all transfer of information with a connection setup procedure (2). If the connection-oriented service includes assurances that frames of information are transferred correctly and in sequence by the data link layer, the network layer can then assume that the packets it sends to its neighbor traverse an error-free pipe. On the other hand, if the data link layer is connectionless, then each frame is sent independently through the data link, probably in unconfirmed manner (without acknowledgments or retransmissions). In this case the network layer cannot make assumptions about the sequencing or correctness of the packets it exchanges with its neighbors (2). The Ethernet local area network provides an example of connectionless transfer of data link frames. The transfer of frames using "Type 2" service in Logical Link Control (discussed in Chapter 6) provides a connection-oriented data link control example. 4. Suppose transmission channels become virtually error-free. Is the data link layer still needed? [2 marks – 1 for the answer and 1 for explanation] Solution: The data link layer is still needed(1) for framing the data and for flow control over the transmission channel. In a multiple access medium such as a LAN, the data link layer is required to coordinate access to the shared medium among the multiple users (1).
    [Show full text]
  • Data Link Layer
    Data link layer Goals: ❒ Principles behind data link layer services ❍ Error detection, correction ❍ Sharing a broadcast channel: Multiple access ❍ Link layer addressing ❍ Reliable data transfer, flow control: Done! ❒ Example link layer technology: Ethernet Link layer services Framing and link access ❍ Encapsulate datagram: Frame adds header, trailer ❍ Channel access – if shared medium ❍ Frame headers use ‘physical addresses’ = “MAC” to identify source and destination • Different from IP address! Reliable delivery (between adjacent nodes) ❍ Seldom used on low bit error links (fiber optic, co-axial cable and some twisted pairs) ❍ Sometimes used on high error rate links (e.g., wireless links) Link layer services (2.) Flow Control ❍ Pacing between sending and receiving nodes Error Detection ❍ Errors are caused by signal attenuation and noise. ❍ Receiver detects presence of errors signals sender for retrans. or drops frame Error Correction ❍ Receiver identifies and corrects bit error(s) without resorting to retransmission Half-duplex and full-duplex ❍ With half duplex, nodes at both ends of link can transmit, but not at same time Multiple access links / protocols Two types of “links”: ❒ Point-to-point ❍ PPP for dial-up access ❍ Point-to-point link between Ethernet switch and host ❒ Broadcast (shared wire or medium) ❍ Traditional Ethernet ❍ Upstream HFC ❍ 802.11 wireless LAN MAC protocols: Three broad classes ❒ Channel Partitioning ❍ Divide channel into smaller “pieces” (time slots, frequency) ❍ Allocate piece to node for exclusive use ❒ Random
    [Show full text]
  • Medium Access Control Layer
    Telematics Chapter 5: Medium Access Control Sublayer User Server watching with video Beispielbildvideo clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Data Link Layer Data Link Layer Data Link Layer Computer Systems and Telematics (CST) Physical Layer Physical Layer Physical Layer Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Metropolitan Area Networks ● Network Topologies (MAN) ● The Channel Allocation Problem ● Wide Area Networks (WAN) ● Multiple Access Protocols ● Frame Relay (historical) ● Ethernet ● ATM ● IEEE 802.2 – Logical Link Control ● SDH ● Token Bus (historical) ● Network Infrastructure ● Token Ring (historical) ● Virtual LANs ● Fiber Distributed Data Interface ● Structured Cabling Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.3 Design Issues ● Two kinds of connections in networks ● Point-to-point connections OSI Reference Model ● Broadcast (Multi-access channel, Application Layer Random access channel) Presentation Layer ● In a network with broadcast Session Layer connections ● Who gets the channel? Transport Layer Network Layer ● Protocols used to determine who gets next access to the channel Data Link Layer ● Medium Access Control (MAC) sublayer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 5: Medium Access Control Sublayer 5.4 Network Types for the Local Range ● LLC layer: uniform interface and same frame format to upper layers ● MAC layer: defines medium access ..
    [Show full text]
  • Nist Sp 800-77 Rev. 1 Guide to Ipsec Vpns
    NIST Special Publication 800-77 Revision 1 Guide to IPsec VPNs Elaine Barker Quynh Dang Sheila Frankel Karen Scarfone Paul Wouters This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-77r1 C O M P U T E R S E C U R I T Y NIST Special Publication 800-77 Revision 1 Guide to IPsec VPNs Elaine Barker Quynh Dang Sheila Frankel* Computer Security Division Information Technology Laboratory Karen Scarfone Scarfone Cybersecurity Clifton, VA Paul Wouters Red Hat Toronto, ON, Canada *Former employee; all work for this publication was done while at NIST This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-77r1 June 2020 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority.
    [Show full text]
  • Network Layer Security Adaptation Profile
    Recommendation for Space Data System Standards NETWORK LAYER SECURITY ADAPTATION PROFILE RECOMMENDED STANDARD CCSDS 356.0-B-1 BLUE BOOK June 2018 Recommendation for Space Data System Standards NETWORK LAYER SECURITY ADAPTATION PROFILE RECOMMENDED STANDARD CCSDS 356.0-B-1 BLUE BOOK June 2018 RECOMMENDED STANDARD FOR NETWORK LAYER SECURITY ADAPTATION PROFILE AUTHORITY Issue: Recommended Standard, Issue 1 Date: June 2018 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the e-mail address below. This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA E-mail: [email protected] CCSDS 356.0-B-1 Page i June 2018 RECOMMENDED STANDARD FOR NETWORK LAYER SECURITY ADAPTATION PROFILE STATEMENT OF INTENT The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Chapter 6: Medium Access Control Layer
    Chapter 6: Medium Access Control Layer Chapter 6: Roadmap " Overview! " Wireless MAC protocols! " Carrier Sense Multiple Access! " Multiple Access with Collision Avoidance (MACA) and MACAW! " MACA By Invitation! " IEEE 802.11! " IEEE 802.15.4 and ZigBee! " Characteristics of MAC Protocols in Sensor Networks! " Energy Efficiency! " Scalability! " Adaptability! " Low Latency and Predictability! " Reliability! " Contention-Free MAC Protocols! " Contention-Based MAC Protocols! " Hybrid MAC Protocols! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 2! Medium Access Control " In most networks, multiple nodes share a communication medium for transmitting their data packets! " The medium access control (MAC) protocol is primarily responsible for regulating access to the shared medium! " The choice of MAC protocol has a direct bearing on the reliability and efficiency of network transmissions! " due to errors and interferences in wireless communications and to other challenges! " Energy efficiency also affects the design of the MAC protocol! " trade energy efficiency for increased latency or a reduction in throughput or fairness! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd. 3! 1! Overview " Responsibilities of MAC layer include:! " decide when a node accesses a shared medium! " resolve any potential conflicts between competing nodes! " correct communication errors occurring at the physical layer! " perform other activities such as framing, addressing, and flow control! " Second layer of the OSI reference model (data link layer) or the IEEE 802 reference model (which divides data link layer into logical link control and medium access control layer)! Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer © 2010 John Wiley & Sons Ltd.
    [Show full text]
  • Data Link Layer Design Issues • Error Detection and Correction • Elementary Data Link Protocols • Sliding Window Protocols • Example Data Link Protocols
    The Data Link Layer Chapter 3 • Data Link Layer Design Issues • Error Detection and Correction • Elementary Data Link Protocols • Sliding Window Protocols • Example Data Link Protocols Revised: August 2011 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 The Data Link Layer Application Responsible for delivering frames of information over a single link Transport Network • Handles transmission errors and Link regulates the flow of data Physical CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Data Link Layer Design Issues • Frames » • Possible services » • Framing methods » • Error control » • Flow control » CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Frames Link layer accepts packets from the network layer, and encapsulates them into frames that it sends using the physical layer; reception is the opposite process Network Link Virtual data path Physical Actual data path CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Possible Services Unacknowledged connectionless service • Frame is sent with no connection / error recovery • Ethernet is example Acknowledged connectionless service • Frame is sent with retransmissions if needed • Very unreliable channels; Example is 802.11 • NOTE: DL acknowledgement is an optimization to improve performance for unreliable channels, ACKs can also be done at higher layers Acknowledged connection-oriented service • Connection is set up; rare • Long
    [Show full text]
  • 1.7 Link-Layer Addressing
    ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY 1.7 LINK-LAYER ADDRESSING A link-layer address is called a link address, called a physical address, and sometimes a MAC address. Since a link is controlled at the data-link layer, the addresses need to belong to the data-link layer. When a datagram passes from the network layer to the data-link layer,the datagram will be encapsulated in a frame and two data-link addresses are added to the frame header.These two addresses are changed every time the frame moves from one link to another. Figure 1.7.1 shows, IP addresses and link-layer addresses in a small internet. This is easy to understand. Fig1.7.1: IP addresses and link-layer addresses in a small internet. [Source :”Data Communications and Networking” by Behrouz A. Forouzan,Page-243] Here we have three links and two routers. We have two hosts: Alice (source) and Bob (destination). For each host, we have shown two addresses, the IP addresses (N) and the link-layer addresses (L). EC8551 COMMUNICATION NETWORKS ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY We have three frames, one in each link.Each frame carries the same datagram with the same source and destination addresses (N1 and N8), but the link-layer addresses of the frame change from link to link. In link 1, the link-layer addresses are L1 and L2. In link 2, they are L4 and L5. In link 3, they are L7 and L8. Note that the IP addresses and the link-layer addresses are not in the same order.
    [Show full text]
  • Lecture 16: TCP/IP Vulnerabilities and Dos Attacks: IP Spoofing, SYN Flooding, and the Shrew Dos Attack
    Lecture 16: TCP/IP Vulnerabilities and DoS Attacks: IP Spoofing, SYN Flooding, and The Shrew DoS Attack Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) March 16, 2021 5:43pm ©2021 Avinash Kak, Purdue University Goals: • To review the IP and TCP packet headers • Controlling TCP Traffic Congestion and the Shrew DoS Attack • The TCP SYN Flood Attack for Denial of Service • IP Source Address Spoofing Attacks • BCP 38 for Thwarting IP Address Spoofing for DoS Attacks • Python and Perl Scripts for Mounting DoS Attacks with IP Address Spoofing and SYN Flooding • Troubleshooting Networks with the Netstat Utility CONTENTS Section Title Page 16.1 TCP and IP 3 16.2 The TCP/IP Protocol Stack 5 16.3 The Network Layer (also known as the Internet 14 Layer or the IP Layer) 16.4 TCP, The Transport Layer Protocol for Reliable 25 Communications 16.5 TCP versus IP 34 16.6 How TCP Breaks Up a Byte Stream That 36 Needs to be Sent to a Receiver 16.7 The TCP State Transition Diagram 38 16.8 A Demonstration of the 3-Way Handshake 44 16.9 Splitting the Handshake for Establishing 52 a TCP Connection 16.10 TCP Timers 58 16.11 TCP Congestion Control and the Shrew DoS Attack 60 16.12 SYN Flooding 68 16.13 IP Source Address Spoofing for SYN Flood 71 DoS Attacks 16.14 Thwarting IP Source Address Spoofing With BCP 38 84 16.15 Demonstrating DoS through IP Address Spoofing and 89 SYN Flooding When The Attacking and The Attacked Hosts Are in The Same LAN 16.16 Using the Netstat Utility for Troubleshooting 103 Networks 16.17 Homework Problems 113 Computer and Network Security by Avi Kak Lecture 16 Back to TOC 16.1 TCP and IP • We now live in a world in which the acronyms TCP and IP are almost as familiar as some other computer-related words like bits, bytes, megabytes, etc.
    [Show full text]
  • Network Layer and IP Protocol
    1 NetworkNetwork Layer:Layer: NetworkNetwork LayerLayer andand IPIP ProtocolProtocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols in the Internet 4. IPv4 5. IP Addressing and Subnetting Introduction 3 Network Layer – supervises host-to-host packet delivery – hosts could be separated by several physical networks • data-link layer provides node-to-node delivery, transport layer provides process-to-process delivery Major (Basic) Network Layer Duties • addressing: identify each device uniquely to allow global communication • routing: determine optimal route for sending a packet from one host to another • packetizing: encapsulate packets received from upper-layer protocols • fragmenting: decapsulate packets from one and encapsulate them for another network Introduction (cont.) 4 Example [ network layer duties in the Internet, at the SOURCE ] find interface from which packet must be sent encapsulate packet from upper layer, i.e. add header: 1) add universal source and destination address; 2) add fields for error control, etc. verify whether destination address is make sure packet is of host address – if so, correct size for data- routing is not needed Internet network layer at the SOURCE link layer, i.e. protocol Introduction (cont.) 5 Example cont. [ network layer duties in the Internet, at a ROUTER ] check if packet has reached its final destination or needs to be forwarded (TTL!) + header error checking !!! Internet network layer at a ROUTER find interface from which packet must be sent Introduction (cont.) 6 Example cont. [ network layer duties in the Internet, at the DESTINATION ] verify whether Internet network layer at the DESTINATION if packet has been destination fragmented, wait address is until all fragments host address have arrived, reassemble them, and then deliver the check if packet has reassembled packet been corrupted to transport layer during transmission 7 1.
    [Show full text]
  • Chapter 5 Link Layer
    Chapter 5 Link Layer Computer Networking: A Top Down Approach th 6 edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Link Layer 5-1 Chapter 5: Link layer our goals: v understand principles behind link layer services: § error detection, correction § sharing a broadcast channel: multiple access § link layer addressing § local area networks: Ethernet, VLANs v instantiation, implementation of various link layer technologies Link Layer 5-2 Link layer, LANs: outline 5.1 introduction, services 5.5 link virtualization: 5.2 error detection, MPLS correction 5.6 data center 5.3 multiple access networking protocols 5.7 a day in the life of a 5.4 LANs web request § addressing, ARP § Ethernet § switches § VLANS Link Layer 5-3 Link layer: introduction terminology: v hosts and routers: nodes global ISP v communication channels that connect adjacent nodes along communication path: links § wired links § wireless links § LANs v layer-2 packet: frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link Link Layer 5-4 Link layer: context v datagram transferred by transportation analogy: different link protocols over v trip from Princeton to Lausanne different links: § limo: Princeton to JFK § e.g., Ethernet on first link, § plane: JFK to Geneva frame relay on § train: Geneva to Lausanne intermediate links, 802.11 v tourist = datagram on last link v transport segment = v each link protocol
    [Show full text]