Cardiac Surgery in Early Infancy J

Total Page:16

File Type:pdf, Size:1020Kb

Cardiac Surgery in Early Infancy J Postgrad Med J: first published as 10.1136/pgmj.48.562.478 on 1 August 1972. Downloaded from Postgraduate Medical Journal (August 1972) 48, 478-485. Cardiac surgery in early infancy J. STARK M.D. Hospital for Sick Children, Great Ormond Street, London, W.C. 1 IMPORTANT advances have been made in the diagnosis and treatment of congenital heart disease (CHD) in early infancy. Accurate diagnosis is now possible in the first days or even hours of life. Operation is also 3530- possible at this early age and very often it provides 0 the only chance for survival. The risk of conservative E .4In15 treatment often exceeds the risk of the operation. O- An aggressive approach to the diagnosis and treat- II II II ment of CHD is dictated by statistics. The estimated z a 10 5 incidence of CHD is 6-8/1000 live births. About 500o 963 99 6 of the children born with CHD die before their first 3 1 1 5 1 16 birthday unless effectively treated. The achievements in the treatment of CHD in infancy are the result of 1963~51964 1965 1966 1967 1968 1969 1970 1971 the combined efforts of paediatricians, cardiologists, FIG. 1. Open-heart surgery under I year of age at the copyright. surgeons, anaesthetists and nurses. Many other Great Ormond Street Thoracic Unit, February 1963 to specialists and technical staff contribute to the September 1971 (115 patients). Open columns, survived; diagnosis and treatment. closed columns, died. The experience of the Thoracic Unit, Hospital for Sick Children at Great Ormond Street, forms the Diagnosis basis of this report (unless otherwise stated). Table 1 Clinical diagnosis of congenital heart anomalies is shows the overall experience with surgical procedures not always easy. This is because several anomalies in infancy and it also indicates the proportion of may be present in one patient and the interpretation patients requiring surgery early in life (under the age of physical signs may be difficult. However, cardiac of 12 months). Although palliative procedures were catheterization and angiocardiography can differen- http://pmj.bmj.com/ for a long time preferred in small babies, the total tiate various defects with great accuracy. Only pre- number of corrective procedures under the age of cise diagnosis can prevent serious errors in indica- 1 year increases progressively. Figure 1 shows the tions and operative treatment. No infant should be overall experience with by-pass surgery under the considered too ill for cardiac catheterization and age of 1 year. It demonstrates the improving chances angiocardiography. We feel that there is no longer a of infants submitted to open-heart surgery in recent place for exploratory thoracotomies to compensate years. for inadequate investigation. Furthermore, no infant on October 5, 2021 by guest. Protected should be considered too ill for an operation, because TABLE 1. Surgical experience 1946 to August 1971 very often this is the only chance for survival to a Diagnosis Total Under 1 year desperately ill baby. As any delay in investigation or operation may provefatal, teams of investigators and Patent ductus arteriosus 1037 259 (25%) be a 24-hr Systemic-pulmonary shunts 739 283 (38%) surgeons should available on basis. To Coarctation of aorta 445 238 (53%) wait until the child demonstrates his will to live is Pulmonary artery constriction 292 244 (83%) no longer an acceptable concept. This, we feel, Transposition of the great arteries merely gives an excuse for not providing adequate Atrial septostomy 217 164 (75%) and facilities. Mustard operation 177 36 (21%) diagnostic surgical Pulmonary stenosis 122 32 (26%) Total anomalous pulmonary Indications venous drainage 78 57 (73%) Cardiac operations in infancy are performed for Vascular rings 47 40 (85%) two main reasons-severe hypoxemia and/or severe Total 3154 1353 (43%) congestive heart failure. The most severe lesions Postgrad Med J: first published as 10.1136/pgmj.48.562.478 on 1 August 1972. Downloaded from Cardiac surgery in early infancy 479 present in the first month of life. Because most of the considered (loss from gastric aspiration, excessive deaths occur very early, operation should be sweating or gains from flushing the intravenous or attempted as soon as possible after the diagnosis has intra-arterial catheters). The accuracy of fluid intake been made. It may be a palliative procedure for is checked regularly by estimating the haematocrit lesions where correction in early infancy carries too and both plasma and urine osmolality. An inadequate high a risk. Corrective operation may be as simple fluid intake can cause thickening of bronchial secre- as ligation of patent ductus arteriosus or it may be tions with subsequent atelectasis, and increased an open-heart procedure requiring the heart-lung blood viscosity (high haematocrit) presents extra apparatus (total anomalous pulmonary venous work for the circulatory system. Excessive fluid intake drainage, transposition of the great arteries, etc.). may cause fatal pulmonary oedema. Oral feeding is The decision between palliative and corrective pro- probably the best prevention of water and electrolyte cedures is not always an easy one. All factors should imbalance. It can often be started 8-12 hr after the be carefully considered. These factors include opera- operation. tive risk of correction early in infancy compared with the combined risk of palliative procedures and cor- (b) Acid-base balance rection a few years later; chances of achieving a com- plete and lasting repair on a very small heart against Both respiratory and metabolic disturbances of progressive and possibly permanent damage caused acid-base balance are common. Cyanotic babies by an uncorrected lesion (pulmonary vascular disease may present with severe metabolic acidosis, while in ventricular septal defect or hemiplegia in cyanotic respiratory acidosis is seen mainly in infants with a heart lesions). Other factors include the emotional large left-to-right shunt. Metabolic alkalosis, which strain which a staged operation presents for the often follows open-heart procedures in small infants, parents, and last but not least, the experience and is not yet fully understood. Respiratory alkalosis can ability of the team of surgeons, physicians, anaes- develop in patients on intermittent positive pressure thetists and nurses is a factor. breathing if the Pco2 is not regularly checked. Early very important diagnosis is the first step towards effective treatment. Samples of arterial blood for blood gas analysis (pH, copyright. Operation Pco,, standard bicarbonate) can be obtained by direct Some of the more frequently used procedures will puncture of the peripheral arteries, butan indwelling be described later. The success of the operation does arterial catheter gives a better opportunity to obtain not depend only on surgical skills, but supervision frequent samples and arterial pressure can be con- of acid-base balance, monitoring of blood pressure, tinuously monitored at the same time. temperature and fluid output and intake often deter- Metabolic acidosis is treated with sodium bicarb- mine the final outcome. onate or THAM, but unless adequate peripheral perfusion is established by surgical intervention, Postoperative care these measures are often of only temporary value' http://pmj.bmj.com/ In our view, postoperative care is an integral part Respiratory acidosis is treated with intermittent of the treatment of CHD. It is as important as a positive pressure ventilation by a nasotracheal tube precise pre-operative diagnosis and as the operation or tracheostomy. Volume-controlled respirators are itself. The importance of good postoperative care preferred. should never be underestimated. Details cannot be discussed in this paper: the following remarks are (c) Postoperative heart failure only intended to outline the programme and to point out some of the more Heart failure may persist from before the opera- on October 5, 2021 by guest. Protected important features. tion or it may develop afterwards. Digoxin is given in the usual dose, that is 0.08 mg/kg body weight in (a) Fluid balance a 2-4 kg baby, reducing the dose to 0.04 mg/kg bod) The right amount of fluid to be given in the post- weight at 10-15 kg. If an immediate inotropic effect operative period is still being discussed. Because of is required, catecholamines (isoprenaline or adren- the 'physiological' postoperative retention, both aline) are used in a slow intravenous drip. The small- water and sodium should be restricted for the first est effective dose is used to ensure an inotropic and few days after the operation. At present we give 5/0 peripheral vasodilating effect. We do not exceed the glucose solution with no added sodium for the first dose of 1 ,ug/kg body weight/min. Diuretics (frus- 48 hr. The volume of fluids is usually restricted to emide, chlorothiazide, spironolactone), adequate about half of the patient's normal daily requirement sedation (morphine 0'02 mg/kg body weight), de- (calculated on the basis of age and weight). The compression of the stomach with a nasogastric tube, calculated amount is very strictly adhered to and all oxygen and antibiotics are also important in the additional sources of intake or output should be treatment of postoperative heart failure. Postgrad Med J: first published as 10.1136/pgmj.48.562.478 on 1 August 1972. Downloaded from 480 J. Stark (d) Heat control failure despite full medical treatment. This happens Infants with congenital heart lesions tolerate post- not infrequently. From a total of 1037 children operative heat loss poorly. Every effort should be operated for ductus arteriosus in the Thoracic Unit, made to maintain a steady environmental tempera- 259 (25%) were under the age of 1 year (Table 1). ture. Frequent handling of the patient, together with the number of drains, intravenous and monitoring Operation lines, and connections to the ventilator make the use The ductus can be ligated or divided.
Recommended publications
  • BAS Talk Linz
    Balloon atrial septostomy Dr Aphrodite Tzifa, MD(Res), FRCPCH! ! Director, Paediatric Cardiology Department, ! Mitera Children's Hospital, Athens, Greece September 10, 2003 ! BAS ! ! 1. The technique of atrial septostomy (BAS) was introduced in 1966 by Rashkind! ! 2. The interventional procedure is performed in neonates that are significantly cyanosed with preductal O2 saturations below 75% after birth or that need an atrial septal defect to offload the LA! “A technique for producing an atrial septal defect without thoracotomy or anesthesia is presented. It can be performed rapidly in any cardiac catheterization laboratory.” (William J. Rashkind, 1966) ! History ! ! “...The initial response to this report varied between admiration and horror but, in either case, the procedure stirred the imagination of the “invasive” cardiologists throughout the entire cardiology world and set the stage for all future intracardiac interventional procedures – the true beginning of pediatric and adult interventional cardiology.” (Charles E. Mullins, 1998) ! HOW to CREATE AN ASD? ! ! 1. Septostomy Balloons! 2. Low profile balloon (Tyshak)! 3. Static balloon (Powerflex, Opta)! 4. Cutting balloons! 5. Blade septostomy catheter! 6. Stenting! ! Transeptal puncture or RF perforation may occasionally be needed Need for creation or enlargement of an ASD: ! WHEN? ! ! 1. TGA: In some units, an atrial septostomy is performed routinely after birth, to ensure mixing of the blood at intracardiac level and discontinue the prostaglandin infusion. However, most would not advocate this due to the potential risk of complications in neonates that are otherwise stable. ! 2. Tricuspid or mitral atresia! 3. PA / IVS! 4. TAPVD with restrictive septum! 5. During hybrid procedures for HLHS syndrome! 6.
    [Show full text]
  • Balloon Atrial Septostomy in Complete Transposition of Great Arteries in Infancy
    Br Heart J: first published as 10.1136/hrt.32.1.61 on 1 January 1970. Downloaded from British HeartJournal, I970, 32, X6i. Balloon atrial septostomy in complete transposition of great arteries in infancy A. W. Venables From Royal Children's Hospital, Melbourne, Australia The results of 26 completed balloon atrial septostomies in complete arterial transposition in infancy are described, and complications discussed. Of 7 deaths following this procedure, 3 were clearly or probably related to it or to its failure to produce an adequate septal defect, while 4 were unrelated. Atrial perforations occurred on 4 occasions. Necropsy information regarding the defects produced by the procedure is given. Anatomical features of the fossa ovalis appear to determine the size of the defect created. The effect of the procedure is illustrated by photographs of representative necropsy specimens. Apparently adequate initial defects do not guarantee satisfactory long-term palliation, and 4 of iI infants followed for more than 6 months after effective initial palliation have required surgical procedures to provide more adequate atrial mixing of blood. Despite this, the procedure appears to offer considerable advantage over initial surgical procedures to create atrial defects. The value of palliative procedures in com- Subjects and methods plete arterial transposition is indisputable. From to mid-May I23 cases of trans- ig60 i969, http://heart.bmj.com/ Most commonly, atrial septal defects arz cre- position of the great arteries in infancy were diag- ated in order to increase effective pulmonary nosed in the Cardiac Unit of the Royal Children's flow. Since I966 the balloon catheter tech- Hospital, Melbourne.
    [Show full text]
  • ICD-9-CM Procedures (FY10)
    2 PREFACE This sixth edition of the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) is being published by the United States Government in recognition of its responsibility to promulgate this classification throughout the United States for morbidity coding. The International Classification of Diseases, 9th Revision, published by the World Health Organization (WHO) is the foundation of the ICD-9-CM and continues to be the classification employed in cause-of-death coding in the United States. The ICD-9-CM is completely comparable with the ICD-9. The WHO Collaborating Center for Classification of Diseases in North America serves as liaison between the international obligations for comparable classifications and the national health data needs of the United States. The ICD-9-CM is recommended for use in all clinical settings but is required for reporting diagnoses and diseases to all U.S. Public Health Service and the Centers for Medicare & Medicaid Services (formerly the Health Care Financing Administration) programs. Guidance in the use of this classification can be found in the section "Guidance in the Use of ICD-9-CM." ICD-9-CM extensions, interpretations, modifications, addenda, or errata other than those approved by the U.S. Public Health Service and the Centers for Medicare & Medicaid Services are not to be considered official and should not be utilized. Continuous maintenance of the ICD-9- CM is the responsibility of the Federal Government. However, because the ICD-9-CM represents the best in contemporary thinking of clinicians, nosologists, epidemiologists, and statisticians from both public and private sectors, no future modifications will be considered without extensive advice from the appropriate representatives of all major users.
    [Show full text]
  • Images Paediatr Cardiol
    W Boehm, M Emmel, and N Sreeram. Balloon Atrial Septostomy: History and Technique. Images Paediatr Cardiol. 2006 Jan-Mar; 8(1): 8–14. in PAEDIATRIC CARDIOLOGY IMAGES Images Paediatr Cardiol. 2006 Jan-Mar; 8(1): 8–14. PMCID: PMC3232558 Balloon Atrial Septostomy: History and Technique W Boehm, M Emmel, and N Sreeram University Hospital of Cologne, Germany. Contact information: N. Sreeram, Department of Paediatric Cardiology, University Hospital of Cologne, Kerpenerstrasse 62, 50937 Cologne, Germany Phone: +49 221 47886301 +49 221 47886301 Fax: +49 221 47886302 ; Email: [email protected] MeSH: Transposition of the great arteries, Heart defects, congenital, Catheter, invervention, Balloon atrial septostomy Copyright : © Images in Paediatric Cardiology This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction “A technique for producing an atrial septal defect without thoracotomy or anesthesia is presented. It can be performed rapidly in any cardiac catheterization laboratory.” (William J. Rashkind, 1966)1 “...The initial response to this report varied between admiration and horror but, in either case, the procedure stirred the imagination of the “invasive” cardiologists throughout the entire cardiology world and set the stage for all future intracardiac interventional procedures – the true beginning of pediatric and adult interventional cardiology.” (Charles E. Mullins, 1998)2 The natural history of untreated transposition of the great vessels in the neonate is poor. Complete correction has been possible since 1959 with the atrial switch procedure, first described by Senning.3 Mustard simplified this method, reducing mortality rates to a reasonable level.4 Best results with both operations were achieved in children beyond six months of age.
    [Show full text]
  • Left Atrial Decompression by Percutaneous Cannula Placement While on Extracorporeal Membrane Oxygenation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Brief Communications provided by Elsevier - Publisher Connector Left atrial decompression by percutaneous cannula placement while on extracorporeal membrane oxygenation Anthony M. Hlavacek, MD, Andrew M. Atz, MD, Scott M. Bradley, MD, and Varsha M. Bandisode, MD, Charleston, SC enoarterial extracorporeal membrane oxygenation serially dilated with 10F and 16F transseptal sheath dilators. With (ECMO) is often used in pediatric patients with severe transesophageal echocardiography guidance, a 17F cannula was myocardial dysfunction, typically after cardiac sur- advanced over the guidewire into the LA and connected to the gery, or in patients with acute myocarditis. A problem venous ECMO circuit. Chest radiography confirmed resolution of Vfrequently encountered in these patients is left atrial hypertension, his pulmonary edema by the subsequent day. An echocardiogram which may result in pulmonary edema, ventricular distention, and revealed normalization of his LA size and an estimated LA pres- subendocardial ischemia.1,2 Decompression of the left atrium (LA) sure decrease to 18 mm Hg by Doppler measurement of the mitral will reduce diastolic pressures in the left heart, resulting in an regurgitation gradient. He remained on ECMO for 42 days until a improvement in coronary perfusion and lessen pulmonary edema. successful orthotopic heart transplant was performed. We describe the percutaneous placement of a venous cannula in the LA while on ECMO in a child with severe
    [Show full text]
  • Interventional Echocardiography: Opportunities and Challenges in an Emerging Field
    Henry Ford Health System Henry Ford Health System Scholarly Commons Cardiology Articles Cardiology/Cardiovascular Research 10-23-2020 Interventional echocardiography: Opportunities and challenges in an emerging field James Lee Tiffany Chen Edward Gill Follow this and additional works at: https://scholarlycommons.henryford.com/cardiology_articles Received: 1 June 2020 | Revised: 10 September 2020 | Accepted: 12 September 2020 DOI: 10.1111/echo.14874 REVIEW Interventional echocardiography: Opportunities and challenges in an emerging field James Lee MD1 | Tiffany Chen MD2 | Edward Gill MD3 1Division of Cardiology, Henry Ford Heart and Vascular Institute, Detroit, MI, USA Abstract 2Division of Cardiovascular Medicine, The growth of transcatheter structural heart disease interventions has created a Perelman School of Medicine, Hospital of subspecialty of interventional imagers who focus on preprocedural planning and the the University of Pennsylvania, Philadelphia, PA, USA periprocedural guidance of these complex cases. In particular interventional imag- 3Division of Cardiology, University of ers who focus on periprocedural guidance have developed a specific expertise in Colorado School of Medicine, Aurora, CO, USA interventional transesophageal echocardiography (iTEE). This nascent field has chal- lenges in training, reimbursement, and occupational hazards which are unique to this Correspondence James Lee, MD, Division of Cardiology, field. This review encompasses the evolution of iTEE, current challenges, and future Henry Ford Heart and Vascular
    [Show full text]
  • NATIONAL QUALITY FORUM National Voluntary Consensus Standards for Pediatric Cardiac Surgery Measures
    NATIONAL QUALITY FORUM National Voluntary Consensus Standards for Pediatric Cardiac Surgery Measures Measure Number: PCS‐001‐09 Measure Title: Participation in a national database for pediatric and congenital heart surgery Description: Participation in at least one multi‐center, standardized data collection and feedback program that provides benchmarking of the physician’s data relative to national and regional programs and uses process and outcome measures. Participation is defined as submission of all congenital and pediatric operations performed to the database. Numerator Statement: Whether or not there is participation in at least one multi‐center data collection and feedback program. Denominator Statement: N/A Level of Analysis: Group of clinicians, Facility, Integrated delivery system, health plan, community/population Data Source: Electronic Health/Medical Record, Electronic Clinical Database (The Society of Thoracic Surgeons Congenital Heart Surgery Database), Electronic Clinical Registry (The Society of Thoracic Surgeons Congenital Heart Surgery Database), Electronic Claims, Paper Medical Record Measure Developer: Society of Thoracic Surgeons Type of Endorsement: Recommended for Time‐Limited Endorsement (Steering Committee Vote, Yes‐9, No‐0, Abstain‐0) Attachments: “STS Attachment: STS Procedure Code Definitions” Meas# / Title/ Steering Committee Evaluation and Recommendation (Owner) PCS-001-09 Recommendation: Time-Limited Endorsement Yes-9; No-0; Abstain-0 Participatio n in a Final Measure Evaluation Ratings: I: Y-9; N-0 S: H-4; M-4; L-1 U: H-9; M-0; L-0 national F: H-7; M-2; L-0 database for Discussion: pediatric I: The Steering Committee agreed that this measure is important to measure and report. and By reporting through a database, it is possible to identify potential quality issues and congenital provide benchmarks.
    [Show full text]
  • STS/EACTS Short List Mapping to European Paediatric Cardiac Code Short List with ICD-9 & ICD-10 Crossmapping
    12S02-05.qxd 22/Sep/02 1:23 PM Page 50 Cardiol Young 2002; 12 (Suppl. 2): 50–62 © Greenwich Medical Media Ltd./AEPC ISSN 1047-9511 STS/EACTS Short List mapping to European Paediatric Cardiac Code Short List with ICD-9 & ICD-10 crossmapping [Boxed items ϭ codes where 2 or 3 EPCC items required for single STS/EACTS item] STS/EACTS term EPCC term EPCC ICD-9 ICD-9 ICD-10 ICD-10 code additional additional Appendix IIIA – Noncardiac Abnormalities Short List None Hereditary/non-cardiac abnormality not apparent, 10.23.00 nc nc Asplenia Spleen absent (asplenia), 03.07.03 759.0 Q20.6 Polysplenia Multiple spleens (polysplenia), 03.07.04 759.0 Q20.6 Down Syndrome Trisomy 21 – Down’s syndrome, 14.01.02 758.0 Q90.9 Turner Syndrome 45XO – Turner’s syndrome, 14.01.05 758.6 Q96 DiGeorge DiGeorge sequence, 14.02.06 279.1 D82.1 Williams Beuren syndrome Williams syndrome (infantile hypercalcaemia), 14.02.30 275.4 747.2 Q93.8 Alagille syndrome (intrahepatic biliary Alagille syndrome: arteriohepatic dysplasia, 14.02.66 751.6 Q44.7 duct agenesis) 22q11 deletion 22q11 microdeletion – CATCH 22, 14.01.21 758.3 Q93.8 Other chromosomal/syndromic abnormality No exact equivalent 759.9 Q87.8 Rubella Fetal rubella syndrome, 14.02.32 771.0 P35.0 Marfan syndrome Marfan syndrome, 14.02.17 759.8 Q87.4 Other preoperative noncardiac abnormality No exact equivalent Appendix IIIB – General Preoperative Risk Factor Short List None No pre-procedural risk factors, 10.20.00 nc nc Preoperative mechanical circulatory support Pre-procedural mechanical circulatory support, 10.20.15
    [Show full text]
  • PROCEDURES Group Subgroup Name Code Anesthetic Procedures
    PROCEDURES group subgroup name code Anesthetic procedures Anesthetic procedures Echocardiography procedure, Sedated transesophageal PROC-2010-2420 echocardiogram Anesthetic procedures Anesthetic procedures Echocardiography procedure, Sedated transthoracic echocardiogram PROC-2010-2430 Anesthetic procedures Anesthetic procedures Non-cardiovascular, Non-thoracic procedure on cardiac patient with PROC-2010-2435 cardiac anesthesia Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Cardiac Computerized PROC-2010-2440 Axial Tomography (CT Scan) Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Cardiac Magnetic PROC-2010-2450 Resonance Imaging (MRI) Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Diagnostic radiology PROC-2010-2460 Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Non-Cardiac Computerized PROC-2010-2470 Tomography (CT) on cardiac patient Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Non-cardiac Magnetic PROC-2010-2480 Resonance Imaging (MRI) on cardiac patient Anesthetic procedures Anesthetic procedures Radiology procedure on cardiac patient, Therapeutic radiology PROC-2010-2490 Cardiomyopathy Cardiomyopathy Partial left ventriculectomy (LV volume reduction surgery) (Batista) PROC87 Cardiomyopathy Cardiomyopathy Transplant, Heart PROC85 Cardiomyopathy Cardiomyopathy Transplant, Heart and lung PROC86 Conduit operations Conduit operations Conduit placement,
    [Show full text]
  • Transposition of the Great Arteries in the Neonate in THIS ISSUE
    NEONATOLOGY TODAY News and Information for BC/BE Neonatologists and Perinatologists Volume 5 / Issue 8 August 2010 Transposition of the Great Arteries in the Neonate IN THIS ISSUE Transposition of the Great By P. Syamasundar Rao, MD Arteries in the Neonate atrium and right ventricle and from there into by P. Syamasundar Rao, MD the aorta while the pulmonary venous blood Page 1 INTRODUCTION enters the left atrium and left ventricle and from there into the pulmonary artery (Figure 1). Therefore, the circulation is parallel in- DEPARTMENT In the previous issues of Neonatology Today, I discussed perinatal circulation,1,2 an ap- stead of normal in-series circulation. There- Global Neonatology Today: A proach to the diagnosis of cyanotic neonate,3 Monthly Column principles of management of the neonate by Dharmapuri Vidyasagar, MD, FAAP, with congenital heart disease4 and neonatal FCCM cardiac emergencies5 -- all addressing the Page 9 general topics of congenital heart disease in the neonate. In this and future issues, com- Medical News, Products & Information monly encountered cardiac defects in the Page 10 neonate. TRANSPOSITION OF THE GREAT ARTERIES NEONATOLOGY TODAY Transposition of the great arteries (TGA) is Editorial and Subscription Offices the most common cyanotic congenital heart 16 Cove Rd, Ste. 200 defect (CHD) in the neonate. It constitutes Westerly, RI 02891 USA 5% of all CHDs and 10% of all neonatal cya- www.NeonatologyToday.net notic CHDs.6 A number of definitions have Neonatology Today (NT) is a monthly been used to describe TGA, but the most newsletter for BC/BE neonatologists and accurate description is “a defect in which the Figure 1.
    [Show full text]
  • Balloon Atrial Septostomy Via the Umbilical Vein
    Br Heart J: first published as 10.1136/hrt.36.10.1040 on 1 October 1974. Downloaded from Case reports British Heart Journal, I974, 36, I040-IO4. Balloon atrial septostomy via the umbilical vein H. H. Kaye' and Michael Tynan From the Department ofCardiology, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne A case of transposition of the great arteries is presented in which an adequate balloon septostomy was per- formed through the umbilical vein. Some diffxiculty was experienced in traversing the ductus venosus. The possible complications of umbilical vein catheterization are reviewed but it is suggested that some of them may be avoided since the procedure is carried out under x-ray control. The outlook for children with transposition of the left ventricle, but this reverted spontaneously to sinus great arteries has improved in recent years. Balloon rhythm. A diagnosis of transposition of the great atrial septostomy (Rashkind and Miller, I966) has arteries with only an interatrial communication was made. shown to be the Bidirectional shunting was demonstrated before septo- been palliative treatment of choice stomy which could only have been taking place at atrial (Tynan, I97I) and considerable success has been level. An unsuccessful attempt was then made to intro- achieved by surgical correction (Clarkson et al., duce a 5 5 French Rashkind catheter into the right copyright. 1972), particularly in infancy (Breckenridge et al., femoral vein, and owing to extensive damage to the 1972). vein it had to be tied off. Because the baby's condition Technical difficulties, however, can be a problem had deteriorated, it was decided to attempt a balloon in the catheter room and some authors have drawn septostomy via the umbilical vein thus saving time and attention to this when discussing balloon atrial limiting further surgical trauma.
    [Show full text]
  • Overview of Endovascular Atrial Septostomy PDF 164 KB
    NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedure overview of balloon or blade atrial septostomy Introduction This overview has been prepared to assist members of IPAC advise on the safety and efficacy of an interventional procedure previously reviewed by SERNIP. It is based on a rapid survey of published literature, review of the procedure by one or more Specialist Advisors and review of the content of the SERNIP file. It should not be regarded as a definitive assessment of the procedure. Date prepared This overview was prepared by Bazian Ltd in March 2003. Procedure name Balloon or blade atrial septostomy including static balloon atrial septostomy Synonym for balloon septostomy: Rashkind septostomy Synonyms for blade septostomy: knife or Park septostomy Specialty society British Paediatric Cardiac Association Indications The main indication for this procedure is transposition of the great arteries; an uncommon congenital cardiac anomaly in which the aorta arises from the right ventricle and the pulmonary trunk arises from the left ventricle. This results in two separate circuits of blood flow, where highly-oxygenated blood keeps cycling through the lungs, while oxygen-depleted blood recycles around the body. As a result, the baby develops a blue colour (cyanosis) shortly after birth. The newborn can survive for a few days because the foramen ovale, a small hole in the foetal interatrial septum, allows some oxygenated blood to mix with the blood that is being circulated around the body. However, the foramen ovale normally closes within a few days after birth. Less commonly, septostomy is carried out in children with other cyanotic congenital abnormalities.
    [Show full text]