University of London Thesis

Total Page:16

File Type:pdf, Size:1020Kb

University of London Thesis lEFERENCE ONLY 2809444294 UNIVERSITY OF LONDON THESIS Jegree Year 2oo~7 Name of Author cHej^TopH€& pAo*L COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide ad d resses where possible). B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D. This copy has been deposited in the Library of ------------------------ ^ This copy has been deposited in the UrUniversity of London Library, Senate House, Malet Street, London WC1E 7HU. ^v>ru^uiviio MtUlb IHAR ROOM 261 UNIVERSITY OF LONDON SENATE HOUSE MALET STREET LONDON WC1E7HU FRONTAL LOBE EPILEPSY, SLEEP AND PARASOMNIAS Christopher Paul Derry MBBS MRCP Thesis submitted for the degree of Doctor of Philosophy September 2006 Institute of Neurology, UCL University of London 1 UMI Number: U592789 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592789 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION OF AUTHORSHIP AND ORIGINALITY I, Christopher Paul Derry, confirm that the work presented in this thesis is my own. Where information has been derived form other sources, this is acknowledged in the text. In particular, for the studies presented in Chapter 11, radiosynthesis of l8F-MPPF was undertaken by Rachel Mulligan at the Austin Hospital and Didier Le Bars in Lyon. The (3-microprobe experiment in this study was designed by me, and I was present during the experiments, but these were primarily conducted by Dr Luc Zimmer from CERMEP, Lyon. Molecular genetic analysis for the families presented in Chapter 14 was undertaken by Ms Sarah Heron and A/Prof J. Mulley at the Department of Genetic Medicine, Women’s and Children’s Hospital, Adelaide, Australia. Christopher Paul Derry 2 DEDICATION For my wife and best friend, Natalie 3 ABSTRACT A close relationship exists between sleep and epilepsy. While many forms of epilepsy may be influenced by the sleep-wake cycle, this phenomenon is particularly evident in frontal lobe epilepsy where affected individuals may experience seizures exclusively during sleep (nocturnal frontal lobe epilepsy, NFLE). In this thesis, three aspects of the relationship between sleep and frontal lobe epilepsy are examined. Firstly, serotonergic neurotransmission across the human sleep-wake cycle was studied using the novel PET ligand l8F-MPPF, a serotonergic 5 HT ia receptor radioligand sensitive to endogenous serotonin release. Fourteen individuals with narcolepsy underwent l8F-MPPF PET scans during sleep and wakefulness. The study demonstrated a 13% increase in l8F-MPPF binding potential (p<0.01) during sleep, indicating a reduction in serotoninergic neurotransmission, in line with existing animal data. Secondly, the characterisation of benign, non-epileptic parasomnias and their distinction from nocturnal frontal lobe seizures was addressed in two studies. The first comprised an analysis of the historical features of these conditions, and included the development and validation of a clinical scale for the diagnosis of nocturnal events. The second comprised a detailed semiological analysis of a series of parasomnias recorded on video-EEG monitoring, and a statistical comparison with seizures in NFLE. Although similarities between NFLE and parasomnias were observed, the results provide an evidence base for the confident distinction of these disorders. Finally, the familial form of NFLE (autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE) is associated with mutations in genes for nicotinic acetylcholine receptor subunits, but recognised mutations account for only a minority of reported cases. The last study presented here is a clinical and genetic analysis of two large families with an unusually severe ADNFLE phenotype. Affected individuals had refractory epilepsy and increased rates of mental retardation and psychiatric disorders 4 and, in one family, linkage studies suggest a previously unrecognised underlying mechanism. 5 ACKNOWLEDGEMENTS There are many people whose help and support were invaluable to me during my PhD studies, both from a professional and personal point of view, and whom 1 would like to thank. Firstly I must express my gratitude for the inspiration, support and guidance provided by my supervisors, Professor Sam Berkovic and Professor John Duncan. Their clear thinking, scientific rigour and clinical acumen have been invaluable during these studies, and they set clinical and research standards which I can only strive to emulate during my own career. I also was fortunate enough to work with many other outstanding researchers and clinicians during the course of my studies. In particular Professor David Reutens, Dr Simon Harvey, Professor Ingrid Scheffer, and Dr Peter Bladin were all actively involved in individual projects within this thesis, and I benefited greatly from their guidance and clinical expertise. In addition, I would like to thank Dr Murray Johns, Dr Matthew Walker, Dr Margot Davey, Dr Carla Marini, Professor Graham Jackson, and Dr Mark Newton, all of whom I worked with, either on a clinical or research basis, and from whose experience and skills I also benefited greatly. I must also acknowledge the encouragement and friendship of the other epilepsy fellows with whom I worked in Melbourne: Nigel Tan, Angelo Labate, Marco Fedi, Saul Mullen, Paulo Federico, Lata Vadlamudi, Ingo Helbig and Isabella Taylor. I am indebted to a number of other individuals for technical and scientific input to this work. The staff of the PET centre at the Austin Hospital, particularly Rachel Mulligan and Henri Tochon Danguay, contributed greatly to the l8F-MPPF study, and Luc Zimmer, Nicholas Costes and Henri Le Bars from CERMEP in Lyon enabled the accompanying animal experiment to be undertaken. Associate Professor Ian Gordon from the University of Melbourne gave statistical advice on several areas in this thesis. Associate Professor John Mulley and Ms Sarah Heron the Department of Genetic Medicine, Women’s and Children’s Hospital, 6 Adelaide, Australia undertook the molecular analysis of the familes presented in Chapter 14. The EEG technicians at the Austin Hospital (Ann Godsil, Josie Curatolo, Louise Feiler, Jan Barchett, Nadia Farrell and Jo Leach), as well as Cathy Bailey from the Royal Children’s Hospital, Melbourne and Catherine Scott from the national Hospital for Neurology and Neurosurgery all provided essential assistance. Last, but not least, I must thank Lisa Johnston, Yvette Reading and Jewell Gardener, and all the research assistants from the Epilepsy Research Centre (Bronwyn Grinton, Jacinta MacMahon, Sam Turner, Danya Vears, Deborah Glencross, Katie Kron, Jodie Malone and Kate Lawrence), for their help and friendship during these studies. Finally, on a more personal note, 1 am deeply grateful to my family for their patience and support during my fellowship. My parents and my brother Andrew, although many miles away, were always ready to help, advise, and sometimes just listen to me through this time. Above all, though, my most profound thanks go to my wife Natalie. She has been with me every step of the way, through the highs and the lows, and has been an unfailingly positive source of love and support. 7 PRIZES AND PEER-REVIEWED PUBLICATIONS Prizes Awarded ILAE (UK) Gowers’ Young Physician Award (2006) Peer Reviewed Publications Derry C, Benjamin C, Bladin P, le Bars H, Tochon-Danguay H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D (2006). Increased serotonin receptor availability in human sleep: evidence from an [18F] MPPF PET study in narcolepsy. Neuroimage; 30: 341-8. Derry C.P, Davey M, Johns M, Kron K, Glencross D, Marini C, Scheffer IE, Berkovic SF, (2006)
Recommended publications
  • How to Take a Sleep History
    1/25/2015 How to take a sleep history Joan Santamaria Neurology Service and Multidisciplinary Sleep Disorders Unit Hospital Clínic of Barcelona 1.- Clinical history: Fundamental: the best “sleep test” Examination: helpful, but not always 2.- Investigations : Sleep tests: PSG, Video-PSG, respiratory polygraphy, MSLT, MWT, actimetry 3.- To rush into a sleep test without considering the history is of little use Taking a good sleep history The bed partner is essential By definition, people is unconscious during sleep Parasomnias, PLMs, Snoring, Sleep apnea, Seizures Daytime sleepiness may be neglected by some patients Even in insomnia patients, the bed partner information may be helpful 1 1/25/2015 Three main complaints I cannot sleep as much as I want (insomnia) Excessive daytime sleepiness (hypersomnia) Abnormal behaviors during sleep (parasomnias and other problems…noise, apnea, enuresis, seizures… ) What are the main questions? Nocturnal sleep characteristics Schedule of sleep during the week and week-end or holidays Latency to sleep, number of awakenings and cause (bathroom, pain, nightmare...) Time and type of final awakening (spontaneous/induced) Feel refreshed / tired on awakening? 23 1 4:30 6 8 Nocturnal sleep pattern Sleep onset insomnia 24 1:30 7:30 Delayed sleep phase 24 3 12 Week day Insufficient sleep 24 5:30 1 11 Week end (> 2 hrs additional sleep duration on week ends, high sleep efficiency) 2 1/25/2015 Sleep diary DEFINITION OF INSOMNIA Two key elements Nocturnal sleep: Difficulty in sleeping as much or as deep as one would
    [Show full text]
  • EEG in the Diagnosis, Classification, and Management of Patients With
    EEG IN THE DIAGNOSIS, J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.069245 on 16 June 2005. Downloaded from CLASSIFICATION, AND MANAGEMENT ii2 OF PATIENTS WITH EPILEPSY SJMSmith J Neurol Neurosurg Psychiatry 2005;76(Suppl II):ii2–ii7. doi: 10.1136/jnnp.2005.069245 he human electroencephalogram (EEG) was discovered by the German psychiatrist, Hans Berger, in 1929. Its potential applications in epilepsy rapidly became clear, when Gibbs and Tcolleagues in Boston demonstrated 3 per second spike wave discharge in what was then termed petit mal epilepsy. EEG continues to play a central role in diagnosis and management of patients with seizure disorders—in conjunction with the now remarkable variety of other diagnostic techniques developed over the last 30 or so years—because it is a convenient and relatively inexpensive way to demonstrate the physiological manifestations of abnormal cortical excitability that underlie epilepsy. However, the EEG has a number of limitations. Electrical activity recorded by electrodes placed on the scalp or surface of the brain mostly reflects summation of excitatory and inhibitory postsynaptic potentials in apical dendrites of pyramidal neurons in the more superficial layers of the cortex. Quite large areas of cortex—in the order of a few square centimetres—have to be activated synchronously to generate enough potential for changes to be registered at electrodes placed on the scalp. Propagation of electrical activity along physiological pathways or through volume conduction in extracellular spaces may give a misleading impression as to location of the source of the electrical activity. Cortical generators of the many normal and abnormal cortical activities recorded in the EEG are still largely unknown.
    [Show full text]
  • Parasomnias Revisited New Mexico Thoracic Society Sapna Bhatia Md 02/25/17 Objectives
    PARASOMNIAS REVISITED NEW MEXICO THORACIC SOCIETY SAPNA BHATIA MD 02/25/17 OBJECTIVES • Appreciate the clinical semiology to help differentiate between REM and NREM parasomnias • Appreciate the ICSD III Classification Scheme for the major parasomnias • Understand management modalities including behavioral and pharmacological for NREM and REM parasomnias • Understand the difference between parasomnias and seizures WHAT ARE PARASOMNIAS? Undesirable motor, or verbal phenomena that arise from sleep or sleep-wake transition PARASOMNIAS: OVERLAPPING STATES REM PARASOMNIAS WAKE NREM PARASOMNIAS REM NREM PARASOMNIAS: DIFFERENTIAL DIAGNOSIS RBD Confusional Arousals Recurrent Isolated Sleep Paralysis Sleepwalking Nightmare Disorder Sleep Terrors WAKE Sleep Related Eating Disorder REM NREM PYSCHOGENIC SEIZURES SPELLS NFLE Dissociative Disorder ICSD II ICSD III REM Parasomnias • RBD • RBD • Recurrent Isolated Sleep • Recurrent Isolated Sleep Paralysis ICSD II VS ICSDParalysis III CLASSIFICATION• Nightmare Disorder • Nightmare Disorder Disorders of arousal • Confusional Arousals • Confusional Arousals (NREM sleep) • Sleepwalking • Sleep Walking • Sleep Terrors • Sleep Terrors • SRED Other Parasomnias • SRED • Sleep Related Dissociative • Sleep Related Dissociative Disorders Disorders • Sleep Enuresis • Sleep Enuresis • Catathrenia SDB • Catathrenia • Exploding Head Syndrome • Exploding Head syndrome • Sleep Related Hallucinations • Sleep Related Hallucinations • Parasomnia, Unspecified • Parasomnia, Unspecified • Parasomnia due to Drug or • Parasomnia
    [Show full text]
  • Parasomnias and Antidepressant Therapy: a Review of the Literature
    REVIEW ARTICLE published: 12 December 2011 PSYCHIATRY doi: 10.3389/fpsyt.2011.00071 Parasomnias and antidepressant therapy: a review of the literature Lara Kierlin1,2 and Michael R. Littner 1,2* 1 David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA 2 Pulmonary, Critical Care and Sleep Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Edited by: There exists a varying level of evidence linking the use of antidepressant medication to Ruth Benca, University of the parasomnias, ranging from larger, more comprehensive studies in the area of REM Wisconsin – Madison School of Medicine, USA sleep behavior disorder to primarily case reports in the NREM parasomnias. As such, prac- Reviewed by: tice guidelines are lacking regarding specific direction to the clinician who may be faced Ruth Benca, University of with a patient who has developed a parasomnia that appears to be temporally related to Wisconsin – Madison School of use of an antidepressant. In general, knowledge of the mechanisms of action of the med- Medicine, USA ications, particularly with regard to the impact on sleep architecture, can provide some David Plante, University of Wisconsin, USA guidance. There is a potential for selective serotonin reuptake inhibitors, tricyclic antide- *Correspondence: pressants, and serotonin–norepinephrine reuptake inhibitors to suppress REM, as well Michael R. Littner, 10736 Des Moines as the anticholinergic properties of the individual drugs to further disturb normal sleep Avenue, Porter Ranch, Los Angeles, architecture. CA 91326, USA. e-mail: [email protected] Keywords: parasomnias, REM sleep behavior disorder, non-REM parasomnias, selective serotonin reuptake inhibitors, depression INTRODUCTION and night terrors (Ohayon et al., 1999; Yeh et al., 2009).
    [Show full text]
  • Dictionary of Epilepsy
    DICTIONARY OF EPILEPSY PART I: DEFINITIONS .· DICTIONARY OF EPILEPSY PART I: DEFINITIONS PROFESSOR H. GASTAUT President, University of Aix-Marseilles, France in collaboration with an international group of experts ~ WORLD HEALTH- ORGANIZATION GENEVA 1973 ©World Health Organization 1973 Publications of the World Health Organization enjoy copyright protection in accord­ ance with the provisions of Protocol 2 of the Universal Copyright Convention. For rights of reproduction or translation of WHO publications, in part or in toto, application should be made to the Office of Publications and Translation, World Health Organization, Geneva, Switzerland. The World Health Organization welcomes such applications. PRINTED IN SWITZERLAND WHO WORKING GROUP ON THE DICTIONARY OF EPILEPSY1 Professor R. J. Broughton, Montreal Neurological Institute, Canada Professor H. Collomb, Neuropsychiatric Clinic, University of Dakar, Senegal Professor H. Gastaut, Dean, Joint Faculty of Medicine and Pharmacy, University of Aix-Marseilles, France Professor G. Glaser, Yale University School of Medicine, New Haven, Conn., USA Professor M. Gozzano, Director, Neuropsychiatric Clinic, Rome, Italy Dr A. M. Lorentz de Haas, Epilepsy Centre "Meer en Bosch", Heemstede, Netherlands Professor P. Juhasz, Rector, University of Medical Science, Debrecen, Hungary Professor A. Jus, Chairman, Psychiatric Department, Academy of Medicine, Warsaw, Poland Professor A. Kreindler, Institute of Neurology, Academy of the People's Republic of Romania, Bucharest, Romania Dr J. Kugler, Department of Psychiatry, University of Munich, Federal Republic of Germany Dr H. Landolt, Medical Director, Swiss Institute for Epileptics, Zurich, Switzerland Dr B. A. Lebedev, Chief, Mental Health, WHO, Geneva, Switzerland Dr R. L. Masland, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, USA Professor F.
    [Show full text]
  • Somnology-Jr-Book.Pdf
    1 To Grace Zamudio and Zoe Lee-Chiong. 2 Preface Carpe noctem. Teofilo Lee-Chiong MD Professor of Medicine Division of Sleep Medicine National Jewish Health Denver, Colorado University of Colorado Denver School of Medicine Denver, Colorado Chief Medical Liaison Philips Respironics Murrysville, Pennsylvania 3 Abbreviations AHI Apnea-hypopnea index BPAP Bi-level positive airway pressure CPAP Continuous positive airway pressure CSA Central sleep apnea ECG Electrocardiography EEG Electroencephalography EMG Electromyography EOG Electro-oculography FEV1 Forced expiratory volume in 1 second GABA Gamma-aminobutyric acid N1 NREM stage 1 sleep N2 NREM stage 2 sleep N3 NREM stages 3 (and 4) sleep NREM Non-rapid eye movement O2 Oxygen OSA Obstructive sleep apnea PaCO2 Partial pressure of arterial carbon dioxide PaO2 Partial pressure of arterial oxygen REM Rapid eye movement sleep SaO2 Oxygen saturation SOREMP Sleep onset REM period 4 Table of contents Introduction 15 Neurobiology of sleep 16 Neural systems generating wakefulness 16 Neural systems generating NREM sleep 16 Neural systems generating REM sleep 16 Main neurotransmitters 17 Acetylcholine 17 Adenosine 17 Dopamine 17 Gamma-aminobutyric acid 17 Glutamate 17 Glycine 17 Histamine 18 Hypocretin 18 Melatonin 18 Norepinephrine 18 Serotonin 18 Physiology during sleep 19 Autonomic nervous system 19 Respiratory system 19 Respiratory patterns 19 Cardiovascular system 19 Gastrointestinal system 20 Renal and genito-urinary systems 20 Endocrine system 20 Growth hormone 20 Thyroid stimulating hormone
    [Show full text]
  • Sleep Disorders As Outlined by Outlined As Disorders Sleep of Classification N the Ribe the Features and Symptoms of Each Disorder
    CHAPTER © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION 2NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORSleep SALE OR DISTRIBUTION Disorders NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Agsandrew/Shutterstock © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE EEG arousal alveolar hypoventilation paradoxical breathing idiopathic central alveolar History of Sleep Disorders© Jones & Bartlett Learning, LLCmicrognathia © Joneshypoventilation & Bartlett Learning, LLC Classification of Sleep DisordersNOT FOR SALE OR DISTRIBUTIONretrognathia NOTsnoring FOR SALE OR DISTRIBUTION Insomnia apnea–hypopnea primary snoring Sleep-Related Breathing Disorders index (AHI) sleep-related groaning Central Disorders of Hypersomnolence respiratory disturbance catathrenia Circadian Rhythm Sleep–Wake Disorders index (RDI) CPAP therapy Parasomnias respiratory effort–related positional therapy Sleep-Related© Jones Movement & Bartlett Disorders Learning, LLC arousal (RERA)© Jones & Bartletttonsillectomy Learning, LLC OtherNOT Sleep FOR Disorders SALE OR DISTRIBUTION upper-airwayNOT resistance FOR SALEadenoidectomy OR DISTRIBUTION Chapter Summary syndrome bi-level therapy excessive daytime multiple sleep latency LEARNING OBJECTIVES sleepiness (EDS) test (MSLT) sudden infant
    [Show full text]
  • Nocturnal Epilepsy and Parasomnias Dr.Ram Sankaraneni 10/02/2020
    10/2/2020 Nocturnal Epilepsy and Parasomnias Dr.Ram Sankaraneni 10/02/2020 1 CREIGHTON UNIVERSITY Disclosures • None 2 1 10/2/2020 CREIGHTON UNIVERSITY Epilepsy and Sleep • 7.5 to 45 percent of people who have epilepsy have seizures mostly during sleep • Sleep disorders more prevalent in epileptic population 3 CREIGHTON UNIVERSITY • Diagnosis of complex nocturnal behaviors is difficult 4 2 10/2/2020 CREIGHTON UNIVERSITY Differential Diagnosis • Nocturnal Seizures • Non Epileptic Motor Disorders 5 CREIGHTON UNIVERSITY Non Epileptic Motor Disorders • NREM Parasomnias • REM parasomnias • Sleep related movement disorders • Psychogenic 6 3 10/2/2020 CREIGHTON UNIVERSITY When to Suspect an Epileptic etiology • Stereotyped nature • High frequency/Clusters • Timing of the events • Duration • Age of onset 7 CREIGHTON UNIVERSITY Nocturnal Seizures • Clinical manifestation of seizures vary based on location and involved network 8 4 10/2/2020 CREIGHTON UNIVERSITY Seizures in various stages of sleep 70 60 50 40 %seizures 30 %sleep 20 10 0 stage 1 stage 2 SWS REM Herman et al, Neurology 2001;56:1453-9. 9 Percentage of partial seizures arising during sleep from various seizure onset zones. S.T. Herman et al. Neurology 2001;56:1453-1459 ©2001 by Lippincott Williams & Wilkins 10 5 10/2/2020 CREIGHTON UNIVERSITY Frontal Lobe Epilepsy •2nd most common epilepsy ( 18% of adults) • Often misdiagnosed 11 CREIGHTON UNIVERSITY Challenges in Diagnosis • Dramatic/complex movements • No postictal state • Often no Aura • EEG – excessive artifacts • EEG – can be normal
    [Show full text]
  • Nocturnal Epilepsies in Adults
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 1997; 6: 145-149 Nocturnal epilepsies in adults BASIM A YAQUB, GHAZALA WAHEED & MOHAMMAD MU KABIRAJ Division of Neurology and Neurophysiology, King Khalid University Hospital, PO Box 7805, Riyadh 11472, Saudi Arabia Correspondence to: Dr. Basim A. Yaqub, Consultant Neurologist, Department of Clinical Neurosciences. Armed Forces Hospital, P.O. Box 7897 (X1006), Riyadh 11159, Kingdom of Saudi Arabia We evaluated the clinical characteristics and the electroencephalographic (EEG) findings by long video-EEG monitoring in 64 successive patients with definite nocturnal seizures. Mental state, neurological examination, neuroimaging and EEG background were normal in all patients. Classification of epilepsies was possible in 42 out of 64 (66%) patients according to the revised Classification of Epilepsies and Epileptic Syndromes by the Commission on Classification and Terminology of International League Against Epilepsy (1989). Out of those 42 patients, 33 (79%) had partial epilepsies, while 9 (21%) had generalized epilepsies. Response to antiepileptic drugs was excellent and only 4 (6%) patients had one seizure attack per year, two of them were on two antiepileptic drugs while the others were free of seizure on a single drug during the 2 years of follow-up. It seems that nocturnal seizuresin adults form a new distinctive partial epileptic syndrome of a benign entity. Key words: nocturnal seizures: epileptic syndromes: video-EEG monitoring: benign childhood epilepsy with centro-temporal spikes:antiepileptic drugs. INTRODUCTION EEG (VEEG) monitoring, has become an essential technique in most sleep laboratories, The pattern of seizure occurrence in most also it is an important technique for the epileptics is random without cycling or clustering identification and classification of unusual sei- so they can occur during the daytime or sleep’.
    [Show full text]
  • Periodic Limb Movement Disorder: Characteristics
    SLEEP SCIENCE : SLEEP , SLEEPINESS , AND SLEEPLESSNESS Kenneth Lichstein, Ph.D. Professor Emeritus Department of Psychology The University of Alabama sleeplessness II a lot can go wrong topics (among 70 sleep disorders) sleep apnea narcolepsy restless legs periodic limb movements disorders we won’t talk about exploding head syndrome sexsomnia sleep-related epilepsy catathrenia if left untreated, sleep apnea is a slow moving terminal illness Pickwickian syndrome (now called obesity-hypoventilation syndrome) obesity, daytime labored breathing, daytime sleepiness ̶ Burwell et al., 1956 10 years later sleep apnea “Nocturnal polygraphic registrations disclosed respiratory pauses…” ̶ Gastaut et al., 1966 invisible sleep apnea science advances by two processes ❑ steady, incremental, systematic research ❑ abrupt, accidental discovery o Between 1956 and 1966, 10s of thousands of PSGs had been performed world wide and no one noticed some people had quit breathing. o Bed partners were not complaining that their partner had quit breathing. when you don’t know what you are looking for, you don’t see the obvious benign snoring and sleep apnea moderate and severe snoring sleep apnea benign snoring I snoring without breath cessation ▪ occurs in 10-15% of population ▪ sleeping on back increases likelihood of snoring ▪ snorer usually has no knowledge of condition ▪ more troublesome to bed partner ▪ at 5-year follow-up, benign snoring (without weight gain) is not a risk factor for sleep apnea physiology ▪ partial airway obstruction ▪ on continuum
    [Show full text]
  • The Effortless Sleep Method: Cure for Insomnia
    Sleeping Pills: An Introduction 1 1 Sleeping Pills: An Introduction What Are Sleeping Pills? Most sleeping pills are “sedative hypnotics.” That’s a specific class of drugs used to induce and/or maintain sleep. Sedative hypnotics include benzodiazepines, barbiturates, and various hypnotics. SLEEPING PILL ABUSE: ITS SIGNS AND SYMPTOMS A number of people underestimate the powerful grip sleeping pills like Ambien or Sonata can have over someone’s life and the dangers of abusing these drugs. 2 The Effortless Sleep Method: Cure for Insomnia... Many people abusing sleeping pills experience memory and concentration problems. Some of the signs of sleeping pill abuse include: • Slurred speech • Uncoordinated movements • Unsteady gait • Inability to focus • Impaired memory • Unusual euphoria. SLEEPING PILLS: ITS MAIN DANGERS Both the immediate and long-term dangers of sleeping pill abuse are enough for most people to exercise caution when using them. However, many people aren’t aware of the dangers of these medications. The dangerous effects of sleep medications range from seizures to depressed breathing. Some people also experience allergic reactions from sleeping pills that can cause difficulty breathing, chest pain, nausea and swelling. Though rare, people who use sleeping pills may even develop parasomnias. Parasomnias are defined as sleep disorders that include behaviors like sleep-walking, sleep-eating, sleep-sex, sleep- driving and other potentially dangerous sleep-related activities. The immediate dangers of sleeping pills range from minor fatigue to coma. Some of these side effects can even lead to deadly overdoses, casting light on the true dangers of sleeping pills. Common symptoms of sleeping pill abuse are: • Dizziness • Dry mouth • Difficulty with coordination • Daytime drowsiness • Memory loss • Unusual dreams • Itching and swelling Sleeping Pills: An Introduction 3 • Lightheadedness • Depressed breathing rate.
    [Show full text]
  • Nocturnal Groaning (Catathrenia) and Epilepsy
    Clinical commentary with video sequences Epileptic Disord 2010; 12 (2): 136-7 Nocturnal groaning (catathrenia) and epilepsy Jan Zinke, Sven Rupprecht, Matthias Schwab, Georg Hagemann Hans Berger Clinic for Neurology, University Hospital Jena, Germany Received March 2, 2010; Accepted April 29, 2010 ABSTRACT – We report the case of a patient with idiopathic generalized epilepsy who ten years after the onset of his epilepsy also developed recurring nocturnal paroxysmal episodes reminiscent of his seizure semiology. Video monitoring and polysomnography revealed episodes of nocturnal groaning. Escalation of antiepileptic treatment was avoided. [Published with video sequences] Key words: differential diagnosis, epilepsy, parasomnia, nocturnal groaning A 22-year-old male suffering from revealed REM-associated episodes seizures was treated with a daily dose of nocturnal groaning without any of 1,500 mg valproate. The seizures further abnormalities (figure 1; see started at the age of 11 years and video sequence). initially were characterized by staring, Nocturnal groaning, or catathrenia, is a hand movements, and impaired rare condition classified as parasomnia consciousness which occurred once (AASM, 2005; Vetrugno et al.,2001) a week during daytime. Additionally, which does not usually require the family reported nocturnal episodes treatment. Therefore, no change of with groaning, more violent jerking of treatment was necessary for this patient. arms and legs, loss of consciousness, Catathrenia has not previously been and enuresis which were considered to reported to be associated with epi- be generalised seizures. Repeated lepsy and it is unknown whether interictal EEGs showed only general- there is any relationship between ised slowing without epileptiform these entities. Therefore, for the time activity or focal abnormalities.
    [Show full text]