Earth Surf. Dynam., 7, 515–536, 2019 https://doi.org/10.5194/esurf-7-515-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland William Santini1,2, Benoît Camenen3, Jérôme Le Coz3, Philippe Vauchel1,2, Jean-Loup Guyot1,2, Waldo Lavado4, Jorge Carranza4, Marco A. Paredes5, Jhonatan J. Pérez Arévalo5, Nore Arévalo6, Raul Espinoza Villar6,7, Frédéric Julien8, and Jean-Michel Martinez1,2 1IRD, Toulouse, 31400, France 2Laboratoire GET, CNRS, IRD, UPS, OMP, Toulouse, 31400, France 3Irstea, UR RiverLy, Lyon-Villeurbanne, 69625 Villeurbanne, France 4SENAMHI, Lima, Lima 11, Peru 5SENAMHI, Iquitos, Peru 6Facultad de Ingeniería Agrícola, UNALM, La Molina, Lima 12, Peru 7IGP, Ate, Lima 15012, Peru 8Laboratoire ECOLAB, CNRS, INPT, UPS, Toulouse, 31400, France Correspondence: William Santini (
[email protected]) Received: 15 December 2018 – Discussion started: 21 January 2019 Revised: 30 March 2019 – Accepted: 21 May 2019 – Published: 4 June 2019 Abstract. Because increasing climatic variability and anthropic pressures have affected the sediment dynam- ics of large tropical rivers, long-term sediment concentration series have become crucial for understanding the related socioeconomic and environmental impacts. For operational and cost rationalization purposes, index con- centrations are often sampled in the flow and used as a surrogate of the cross-sectional average concentration. However, in large rivers where suspended sands are responsible for vertical concentration gradients, this index method can induce large uncertainties in the matter fluxes. Assuming that physical laws describing the suspension of grains in turbulent flow are valid for large rivers, a simple formulation is derived to model the ratio (α) between the depth-averaged and index concentrations.