This Is a Text Test of the Font

Total Page:16

File Type:pdf, Size:1020Kb

This Is a Text Test of the Font INDEX active layer 238, 493 cross stratification 498 aerodynamic threshold 332 debris flow 490 aggradation 491 degradation 491, 496 Airy waves 203 deposition ratio 491 amalgamation 498 depth-limited sea 189 angle of climb 505 differential transport 486 angular velocity 205 diffusion 15 antidunes 357 dimensional analysis 31 armor 459 displacement height 385 backwater curve 182 drag 264 barchans 433 drag coefficient 25 bed 497 drag crisis 74 bed configuration 350 drag partition 249 bedding 497 dunes 356, 432 bed-form transport rate 398 dynamic pressure 4 bed forms 350 dynamically rough flow 109 bed load 285, 286, 294 dynamically smooth flow 108 bed phase 350 eddies 53 bed state 350 eddy diffusion coefficient 116 bed-material load 286 eddy viscosity 116 Bernoulli equation 43, 48 Ekman layer 227, 228 boundary layer 53 Ekman spiral 218 boundary Reynolds number 109 elevation head 165 boundary shear stress 104 energy cascade 120 brink 355 energy grade line 166 buffer layer 102 energy gradient 166, 179 buoyancy 8 energy slope 166, 179 burst 150 equal mobility 460 burst–sweep cycle 150 equation of motion 34 Chézy coefficient 115 equivalent sand roughness 114, 136 Chézy equation 115 fall velocity 75 climbing-ripple cross stratification 507 fetch 189 coherent structures 149 flow intensity 285 combined flow 194 flow regimes 71, 379 competence 260 flow resistance 117 conservation of sediment volume 486 flow separation 65, 381 continua 2 fluid threshold 332 core region 102 flumes 254 Coriolis acceleration 204 form drag 19, 249 Coriolis effect 204 fractional transport rate 459 Coriolis force 204 fractionation 494 Coriolis parameter 211 free body 7 creeping flow 37 free stream 53 critical flow 169 free surface 84, 157 critical shear stress 260 friction factor 112 cross bedding 497 friction velocity 109 cross lamination 497 Froude number 30. 32 geophysical flows 201 momentum function 175 geostrophic balance 225 Navier–Stokes equation 35 geostrophic motion 225 nominal diameter 238 gradation independence 460 nonlinear waves 186 gradually varied flows 178 normal depth 180 grain-fall laminae 525 open-channel flow 83, 157 grain flows 304 oscillatory waves 186 grain-flow laminae 525 outer layer 102 granule ripples 431 overlap layer 141 gravity waves 201 overloading 483 hairpin vortices 153 partial transport 478 head loss 165 particle-weight effect 460 hiding–sheltering effect 460 pathline 44 Hjulström diagram 278 pavement 459 horseshoe vortices 153 Pi theorem 34 hummocky cross stratification 518 Pinstripe laminae 515 hydraulic jump 172 planar bed surface 357 hydraulic radius 88 planar stratification 531 hydrostatic balance 7 planetary boundary layer 230 hydrostatic equation 6 pocket 296 hydrostatic pressure 6 pressure 3 impact creep 323 pressure drag 19 impact threshold 332 pressure head 165 inertia circle 214 pure drift currents 215 inertia currents 213 rapidly varied flows 178 inertia period 214 reattachment 381 interfacial deposition 489 reference transport rate 471 intermittent suspension load 286 relative height 186 internal boundary layer 64 relative roughness 112, 194 inviscid flow 40 reptation 323 inviscid fluid 40 resistance diagram 113 isobaric surfaces 221 Reynolds numbers 22, 32, 54 isobars 224 Reynolds-number similarity 120 kinematic viscosity 109 Reynolds stress 96 lamina, laminae 497 rheological layer 305 laminar flows 53 rib and furrow 511 laminar separation 72 ripple crest 355 lamination 497 ripple trough 355 law of the wall 123, 131 ripples 355 lee surface 355 Robins effect 330 lift 264 rollability effect 460 linear waves 186 Rossby number 212 load 286, 445 Rouse number 310 logarithmic layer 142, 235 roughness element 130 lower flow regime 379 roughness length 139 low-point curve 503 roughness Reynolds number 109 Magnus effect 330 saltation 286, 306, 321 mass deposition 488 scale modeling 23 mixed layer 232, 233 sediment 237 sediment conservation equation 400– total head 165 402 traction 307 sediment discharge 445 traction carpet 305 sediment-discharge formulas 453 transitionally rough flow 109 sediment transport rate 445 translatent laminae 525 selective entrainment 459, 478 translatory waves 186 separation vortex 382 transport stage 289 settling 483 truncation surface 498 settling velocity 75 turbidity current 490 shear layer 381 turbulence 48 shear stress 12 turbulence closure problem 98 shear velocity 109 turbulence-dominated region 103 Shields curve 273 turbulence-generation layer 102 Shields diagram 273 turbulent diffusion 93 Shields parameter 267 turbulent separation 72 size fraction 457 turbulent shear flow 99 skimming flow 149 turbulent shear stress 96 skin friction 249 two-dimensional wave spectrum 190 slip face 355 two-phase flow 241 sorting 239, 457 uniform flow 83, 160 specific energy 165 unit sediment transport rate 456 specific head 165 upper flow regime 379 specific weight 9 velocity defect law 130 specific-energy diagram 167 velocity head 165 specific-head diagram 167 viscosity 10 spectral waves 190 viscosity-dominated region, 103 splash function 339 viscous drag 19 stagnation point 42 viscous length scale 110 static pressure 4 viscous sublayer 100 steady flow 83 von Kármán’s constant 127 Stokes’ law 38 vortex ripples 438 stoss surface 355 vorticity 53, 150 stratification 497 wake 61, 67 stratified flows 157 wake-interference flow 148 stratum, strata 497 wash load 285, 286 streakline 44 wave boundary layer 190 streamline 44 wave friction factor 194 stream tube 44 wave steepness 186 structure 497 wave–current boundary layer 211, 215 subcritical flow 169 wavelets 201 supercritical flow 169 wind ripples 431 surface creep 323 zero-plane displacement 385 susceptibility 328 suspended load 285, 286 suspension 307 sweep 150 terminal velocity 75 texture 497 threshold shear stress 260 .
Recommended publications
  • Particle Size Distribution Controls the Threshold Between Net Sediment
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Particle Size Distribution Controls the Threshold Between 10.1002/2017GL076489 Net Sediment Erosion and Deposition in Suspended Key Points: Load Dominated Flows • New flow power sediment entrainment model scales with flow R. M. Dorrell1 , L. A. Amy2, J. Peakall3, and W. D. McCaffrey3 depth instead of particle size and incorporates capacity and 1Energy and Environment Institute, University of Hull, Hull, UK, 2School of Earth Sciences, University College Dublin, Dublin, competence limits 3 • Suspended load, at the threshold Ireland, School of Earth and Environment, University of Leeds, Leeds, UK between net erosion and deposition, is shown to be controlled by the particle size distribution Abstract The central problem of describing most environmental and industrial flows is predicting when • Flow power model offers an order of material is entrained into, or deposited from, suspension. The threshold between erosional and magnitude, or better, improvement in fl predicting the erosional-depositional depositional ow has previously been modeled in terms of the volumetric amount of material transported in threshold suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow’s ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a fi Supporting Information: new particle entrainment function, where erosion is de ned in terms of the power used to lift mass from the • Table S1 bed. While current suspended load transport models commonly use a single characteristic particle size, • Supporting Information SI the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow.
    [Show full text]
  • Delft Hydraulics
    Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT Report November 2004 Z3748.00 WL | delft hydraulics Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT L.C. van Rijn, D.J.R. Walstra and M. van Ormondt Report Z3748.10 WL | delft hydraulics CLIENT: DG Rijkswaterstaat Rijks-Instituut voor Kust en Zee | RIKZ TITLE: Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE, FINAL REPORT ABSTRACT: In 2003 much effort has been spent in the improvement of the DELFT3D-ONLINE model based on the engineering sand transport formulations of the TRANSPOR2000 model (TR2000). This work has been described in Delft Hydraulics Report Z3624 by Van Rijn and Walstra (2003). However, the engineering sand transport model TR2000 has recently been updated into the TR2004 model within the EU-SANDPIT project. The most important improvements involve the refinement of the predictors for the bed roughness and the suspended sediment size. Up to now these parameters had to be specified by the user of the models. As a consequence of the use of predictors for bed roughness and suspended sediment size, it was necessary to recalibrate the reference concentration of the suspended sediment concentration profile. The formulations (including the newly derived formulations of TR2004) implemented in this 3D-model are described in detail. The implementation of TR2004 in Delft3D-ONLINE is part of an update of Delft3D which involves among others: the extension of the model to be run in profile mode, the synchronisation of the roughness formulations and inclusion of two breaker delay concepts.
    [Show full text]
  • Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang
    Chapter Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang Abstract Sediment transport (ST) in unsteady flows is a complex phenomenon that the existing formulae are often invalid to predict. Almost all existing ST formulae assume that sediment transport can be fully determined by parameters in streamwise direc- tion without parameters in vertical direction. Different from this assumption, this paper highlights the importance of vertical motion and the vertical velocity is suggested to represent the vertical motion. A connection between unsteadiness and vertical velocity is established. New formulae in unsteady flows have been developed from inception of sediment motion, sediment discharge to suspension’s Rouse num- ber. It is found that upward vertical velocity plays an important role for sediment transport, its temporal and spatial alternations are responsible for the phase lag phenomenon and bedform formation. Reasonable agreement between the measured and the proposed conceptual model was achieved. Keywords: unsteady flow, shields number, rouse number, sediment transport, vertical velocity 1. Introdution Sediment transport is the movement of solid particles driven by fluid like water or wind in rivers, lakes, reservoirs, coastal waters. Generally, in the real world the flow is unsteady like flood waves, tidal waves and wind waves, because steady and uniform flows are very rare in reality. Even so, it is understandable that sediment transport is first observed under well controlled conditions in laboratory, and then the data are collected to calibrate the models. These formulae are further examined using field data by assuming the laboratory flow conditions (generally steady and uniform flows) can be extended to rivers and coastal waters (generally unsteady and non-uniform).
    [Show full text]
  • Two-Phase Modeling of Granular Sediment for Sheet Flows and Scour
    TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Laurent Olivier Amoudry January 2008 c 2008 Laurent Olivier Amoudry ALL RIGHTS RESERVED TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. Laurent Olivier Amoudry, Ph.D. Cornell University 2008 Even though sediment transport has been studied extensively in the past decades, not all physical processes involved are yet well understood and repre- sented. This results in a modeling deficiency in that few models include complete and detailed descriptions of the necessary physical processes and in that mod- els that do usually focus on the specific case of sheet flows. We seek to address this modeling issue by developing a model that would describe appropriately the physics and would not only focus on sheet flows. To that end, we employ a two-phase approach, for which concentration- weighted averaged equations of motion are solved for a sediment and a fluid phase. The two phases are assumed to only interact through drag forces. The correlations between fluctuating quantities are modeled using the turbulent viscosity and the gradient diffusion hypotheses. The fluid turbulent stresses are calculated using a modified k−ε model that accounts for the two-way particle-turbulence interaction, and the sediment stresses are calculated using a collisional granular flow theory. This approach is used to study three different problems: dilute flow modeling, sheet flows and scouring. In dilute models sediment stresses are neglected.
    [Show full text]
  • A Two-Phase Flow Model of Sediment Transport: Transition from Bedload To
    J. Fluid Mech. (2014), vol. 755, pp. 561–581. c Cambridge University Press 2014 561 doi:10.1017/jfm.2014.422 A two-phase flow model of sediment transport: transition from bedload to suspended load Filippo Chiodi1, Philippe Claudin1 and Bruno Andreotti1, † 1Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France (Received 7 December 2013; revised 2 May 2014; accepted 21 July 2014) The transport of dense particles by a turbulent flow depends on two dimensionless numbers. Depending on the ratio of the shear velocity of the flow to the settling velocity of the particles (or the Rouse number), sediment transport takes place in a thin layer localized at the surface of the sediment bed (bedload) or over the whole water depth (suspended load). Moreover, depending on the sedimentation Reynolds number, the bedload layer is embedded in the viscous sublayer or is larger. We propose here a two-phase flow model able to describe both viscous and turbulent shear flows. Particle migration is described as resulting from normal stresses, but is limited by turbulent mixing and shear-induced diffusion of particles. Using this framework, we theoretically investigate the transition between bedload and suspended load. Key words: alluvial dynamics, multiphase and particle-laden flows, particle/fluid flow 1. Introduction When a sedimentary bed is sheared by a water flow of sufficient strength, the particles are entrained into motion. In a homogeneous and steady situation, the fluid flow can be characterized by a unique quantity: the shear velocity u .
    [Show full text]
  • Suspended Sediment Concentration Profiles in the Bottom Boundary Layer
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1993 Suspended sediment concentration profiles in the bottom boundary layer Jingping Xu College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Geology Commons, and the Oceanography Commons Recommended Citation Xu, Jingping, "Suspended sediment concentration profiles in the bottom boundary layer" (1993). Dissertations, Theses, and Masters Projects. Paper 1539616914. https://dx.doi.org/doi:10.25773/v5-55tq-zj21 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Design of a Sediment Mitigation System for Conowingo Dam Presenters: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume
    Design of a Sediment Mitigation System for Conowingo Dam Presenters: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume Sponsor: Faculty Advisor: Lower George Donohue Susquehanna Riverkeeper Agenda • Context • Stakeholders • Problem/Need Statement • Mission Requirements • Design Alternatives • Technical Approach • Preliminary Results • Project Management 2 Chesapeake Bay and The Susquehanna River • Chesapeake Bay is the largest estuary in the United States • 3 largest tributaries of the Bay are the Susquehanna, Potomac and James rivers – Provide more than 80% of the Bay’s freshwater • Susquehanna River is the Bay’s largest tributary – Provides nearly 50% of freshwater to the Bay – Flows from NY to PA to MD Map of the Chesapeake Bay Watershed Source: The PA Dept. of Environmental Protection 3 Lower Susquehanna River and Water Quality • Flows through Pennsylvania and Maryland • Quality of water is vital to the bay’s health – Improvement in water quality thus far can be attributed to US Army Corp. of Engineers • Provides power for turbines in hydroelectric plants and clean water to people • Contains 4 Dams: York Haven, Safe Harbor, Holtwood, Conowingo – York Haven, Safe Harbor and Holtwood have reached steady state - dam has completely silted up and is no longer able to retain sediment; dams are at maximum capacity Map of Conowingo Reservoir Source: US Army Corps of Engineers, (2013) 4 Conowingo Dam • Constructed in 1928 • Southernmost Dam of the Lower Susquehanna sediment • Location of Conowingo Hydroelectric Station – Mainly provides power to Philadelphia, PA – A black start power source – Provides 1.6 billion kWh annually • Traps sediment and nutrients from reaching the Chesapeake Bay – Water quality is closely related to sediment Conowingo Dam deposition Source: J.
    [Show full text]
  • Chapter 10 Movement of Sediment by Water Flows
    CHAPTER 10 MOVEMENT OF SEDIMENT BY WATER FLOWS INTRODUCTION 1 A simple flume experiment on sediment movement by a unidirectional current of water in a flume serves to introduce the material in this chapter. Place a layer of sediment in the flume, level it to have a planar surface, and establish a uniform flow at a certain depth and velocity. Gradually, in steps, increase the strength of the flow beyond the condition for incipient movement. The magnitude of the flow strength relative to what is required for incipient movement of the bed sediment is conventionally called the flow intensity, and is usually taken to be the ratio τo/τoc (or, what is the same, u*/u*c), where the subscript c denotes the threshold (“critical”) condition. 2 At first the particles move as bed load, by hopping, rolling, and/or sliding. Particle movement is neither continuous nor uniform over the bed: brief gusts or pulses of movement affect groups of particles locally, and seemingly randomly, on the bed. Particles move a short distance, stop, and then move again. Even when they are moving, they are generally not moving as fast as the fluid near the bed surface. 3 As the flow becomes stronger, some of the particles moving near the bed are lifted upward by upward-moving turbulent eddies and travel for more or less long distances downstream as suspended load. The stronger the flow and/or the finer the sediment, the greater is the concentration of suspended sediment, the higher it can travel in the flow, and the longer it moves downstream before returning to the bed.
    [Show full text]
  • Chapter 29 Sediment Transport
    Chapter 29 Sediment transport 29.1 Introduction The following seven test cases have been developed to illustrate the various options implemented in the sediment transport module bedload Compares the different formulations for bed load transport by im- posed currents (bottom stress) values (see Section 7.4). totload Compares the different formulations for total load transport by im- posed current (bottom stress) values (see Section 7.5). wavload Compares formulations for bed and total load transport with wave effects using imposed values for currents and wave parameters (wave height, period and direction). sedvprof Simulates the diffusion and settling of sediments in a water column by a bottom stress imposed via an external pressure gradient (surface slope). sedhprof This test case, taken from Hjelmfelt & Lenau (1970), simulates the transition between a non-eroding and an eroding bed. This is modeled by applying a boundary condition with a concentration of zero at the upstream boundary. Note that the velocity field is supplied as an initial condition, rather than calculated by COHERENS. Both 2-D and 3-D simulations are performed and different model settings are applied to simulate the convergence to an equilibrium state. seddens Simulates the evolution of an initial sediment distribution in a closed channel, consisting of vertically uniform concentrations in a sec- tion at the left of the channel and zero concentrations to the right. 793 794 CHAPTER 29. SEDIMENT TRANSPORT The sediment is allowed to settle due to is own weight. A current is generated by the horizontal concentration gradient. thacker This test case, after Thacker (1981), simulates the oscillations in a rotating parabolic basin with moving boundaries (shores lines).
    [Show full text]
  • Numerical Simulation of the Inception of Channel Meandering
    Earth Surface Processes and Landforms EarthSimulation Surf. Process. of the inceptionLandforms of30 channel, 1093–1110 meandering (2005) 1093 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/esp.1264 Numerical simulation of the inception of channel meandering Jennifer G. Duan1* and Pierre Y. Julien2 1 Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, Nevada 89119, USA 2 Engineering Research Centre, Colorado State University, Fort Collins, CO 80523, USA *Correspondence to: J. G. Duan, Abstract Division of Hydrologic Sciences, Desert Research Institute, The inception of channel meandering is the result of the complex interaction between flow, University and College System of bed sediment, and bank material. A depth-averaged two-dimensional hydrodynamic model Nevada, 755 E. Flamingo Road, is developed to simulate the inception and development of channel meandering processes. Las Vegas, NV 89119, USA. The sediment transport model calculates both bedload and suspended load assuming equi- E-mail: [email protected] librium sediment transport. Bank erosion consists of two interactive processes: basal erosion and bank failure. Basal erosion is calculated from a newly derived equation for the entrain- ment of sediment particles by hydrodynamic forces. The mass conservation equation, where basal erosion and bank failure are considered source terms, was solved to obtain the rate of bank erosion. The parallel bank failure model was tested with the laboratory experiments of Friedkin on the initiation and evolution processes of non-cohesive meandering channels. The model replicates the downstream translation and lateral extension of meandering loops reasonably well. Plots of meandering planforms illustrate the evolution of sand bars and redistribution of flow momentum in meandering channels.
    [Show full text]
  • Universit`A Degli Studi Di Trieste Large Eddy Simulation of Suspended
    Universita` degli Studi di Trieste XXVII Ciclo del Dottorato di Ricerca in Environmental and Industrial Fluid Mechanics Large Eddy Simulation of Suspended Sediment in Turbulent Open-Channel Flow Settore scientifico-disciplinare: ICAR/01 Ph.D. Student: Maryam Dallali Supervisor and Director: Prof. Vincenzo Armenio Co-Supervisor: Prof. Ana Maria Ferreira da Silva Co-Supervisor: Prof. Andrew Pollard Academic Year 2014-2015 ii Abstract This study aims to shed light on the dark sides of sediment transport and meandering channel flow patterns. For this purpose, the Large Eddy Simula- tion methodology is used to investigate sediment transport in open-channel flow and also to predict the meandering channel flow pattern in two sine- generated channels. In the turbulent flows the transported suspended sediments is usually assumed in a passive form. In other word, the feedback effect of sediment suspension on near-wall momentum transport is neglectable. The first phase of this research is devoted to quantify the just mentioned effect in the open channel flow. A single phase approach is used to gain better description of sediment-turbulence interaction. The effect of suspended particles on flow properties is presented through a buoyancy term in momentum equations. The initial analysis of concentration profiles shows that the combina- tion of large near-wall concentration and small deposition term, enhances the suspension concentration in case of small particles. Considering the buoyancy effect (two-way coupling model), the suspension concentration is reduced compared to the passive case. In addition, the buoyancy effects on the velocity field are also discussed. The comparison of streamwise mean velocity profiles reveals that the interaction of suspended particles with the underlying flow suppresses the vertical turbulent fluctuations and conse- quently reduces the von K`arm`anconstant (κ).
    [Show full text]
  • Design of a Dam Sediment Management System to Aid Water
    Design of a Dam Sediment Management System to Aid Water Quality Restoration of the Chesapeake Bay Presented By: Sheri Gravette Kevin Cazenas Said Masoud Rayhan Ain Sediment Plume from Transient Scouring Sponsors: Lower West & Rhode Susquehanna Riverkeeper Riverkeeper Dam Conowingo Faculty Advisor: George Donohue Agenda • Context • Stakeholders • Problem/Need Statement • Design Alternatives • Analysis and Design of Simulation • Design of Experiment • Results, Analysis & Recommendations 2 Chesapeake Bay and The Susquehanna River • Chesapeake Bay is the largest estuary in the United States • 3 largest tributaries of the Bay are the Susquehanna, Potomac and James rivers – Provide more than 80% of the Bay’s freshwater • Susquehanna River is the Bay’s largest tributary – Provides nearly 50% of freshwater to the Bay – Flows from NY to PA to MD Map of the Chesapeake Bay Watershed Source: The PA Dept. of Environmental Protection 3 Lower Susquehanna River and Conowingo Dam • Conowingo Dam (est. 1928) – southernmost Dam of the Lower Susquehanna • Quality of water from the Lower Susquehanna is vital to the bay’s health • Traps sediment and nutrients from reaching the Chesapeake Bay – Water quality is closely related to sediment deposition • The river provides power for turbines in hydroelectric plants and clean water to people • Conowingo Hydroelectric Station – Mainly provides power to Philadelphia, PA – A black start power source – Provides 1.6 billion kWh annually Map of Conowingo Reservoir Source: US Army Corps of Engineers, (2013) 4 Lower Susquehanna
    [Show full text]