SIMPLE GENERAL FORMULAE for SAND TRANSPORT in RIVERS, ESTUARIES and COASTAL WATERS by L.C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(P 117-140) Flood Pulse.Qxp
117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g. -
Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. -
Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply. -
It Is Quite Common for Confusion to Arise About the Process Used During a Hydrographic Survey When GPS-Derived Water Surface
It is quite common for confusion to arise about the process used during a hydrographic survey when GPS-derived water surface elevation is incorporated into the data as an RTK Tide correction. This article explains a little about the process. What we are discussing here might be a tide-related correction to a chart datum for coastal surveying – maybe to update navigational charts, or it might be nothing to do with tides at all. For example, surveying a river with the need to express bathymetry results as a bottom elevation on the desired vertical datum – not simply as “depth” results. Whether it is anything to do with tidal forces or not, the term “RTK Tide” is ubiquitous in hydrographic-speak to refer to vertical corrections of echo sounding data using RTK GPS. Although there is some confusing terminology, it’s a simple idea so let’s try to keep it that way. First keep in mind any GPS receiver will give the user basically two things in terms of vertical positioning: height above the GPS reference ellipsoid surface and height above Mean Sea Level (MSL) where ever he or she is on the Earth. How is MSL defined? Well, a geoid surface is a measure of the strength of gravity which in turn mostly controls the height of the sea; it is logical to say that MSL height equals the geoid height and vice versa. Using RTK techniques to obtain tide information is a logical extension of this basic principle. We are measuring the GPS receiver height above a geoid. -
Lesson 4: Sediment Deposition and River Structures
LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Sandbridge Beach FONSI
FINDING OF NO SIGNIFICANT IMPACT Issuance of a Negotiated Agreement for Use of Outer Continental Shelf Sand from Sandbridge Shoal in the Sandbridge Beach Erosion Control and Hurricane Protection Project Virginia Beach, Virginia Pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and Department of the Interior (DOI) regulations implementing NEPA (43 CFR 46), the Bureau of Ocean Energy Management (BOEM) prepared an environmental assessment (EA) to determine whether the issuance of a negotiated agreement for the use of Outer Continental Shelf (OCS) sand from Sandbridge Shoal Borrow Areas A and B for the Sandbridge Beach Erosion Control and Hurricane Protection Project near Virginia Beach, VA would have a significant effect on the human environment and whether an environmental impact statement (EIS) should be prepared. Several NEPA documents evaluating impacts of the project have been previously prepared by both the US Army Corps of Engineers (USACE) and BOEM. The USACE described the affected environment, evaluated potential environmental impacts (initial construction and nourishment events), and considered alternatives to the proposed action in a 2009 EA. This EA was subsequently updated and adopted by BOEM in 2012 in association with the most recent 2013 Sandbridge nourishment effort (BOEM 2012). Prior to this, BOEM (previously Minerals Management Service [MMS]) was a cooperating agency on several EAs for previous projects (MMS 1997; MMS 2001; MMS 2006). This current EA, prepared by BOEM, supplements and summarizes the aforementioned 2012 analysis. BOEM has reviewed all prior analyses, supplemented additional information as needed, and determined that the potential impacts of the current proposed action have been adequately addressed. -
Sedimentation and Shoaling Work Unit
1 SEDIMENTARY PROCESSES lAND ENVIRONMENTS IIN THE COLUMBIA RIVER ESTUARY l_~~~~~~~~~~~~~~~7 I .a-.. .(.;,, . I _e .- :.;. .. =*I Final Report on the Sedimentation and Shoaling Work Unit of the Columbia River Estuary Data Development Program SEDIMENTARY PROCESSES AND ENVIRONMENTS IN THE COLUMBIA RIVER ESTUARY Contractor: School of Oceanography University of Washington Seattle, Washington 98195 Principal Investigator: Dr. Joe S. Creager School of Oceanography, WB-10 University of Washington Seattle, Washington 98195 (206) 543-5099 June 1984 I I I I Authors Christopher R. Sherwood I Joe S. Creager Edward H. Roy I Guy Gelfenbaum I Thomas Dempsey I I I I I I I - I I I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PREFACE The Columbia River Estuary Data Development Program This document is one of a set of publications and other materials produced by the Columbia River Estuary Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. In response to these concerns, the Governors of the states of Oregon and Washington requested in 1974 that the Pacific Northwest River Basins Commission (PNRBC) undertake an interdisciplinary ecological study of the estuary. At approximately the same time, local governments and port districts formed the Columbia River Estuary Study Taskforce (CREST) to develop a regional management plan for the estuary. PNRBC produced a Plan of Study for a six-year, $6.2 million program which was authorized by the U.S. -
Drainage-Design-Manual.Pdf
City of El Paso Engineering Department Drainage Design Manual May 2Ol3 City of El Paso-Engineering Department Drainage Design Manual 19. Green Infrostruclure - OPTIONAL 19. Green Infrastructure - OPTIONAL 19.1. Background and Purpose Development and urbanization alter and inhibit the natural hydrologic processes of surface water infiltration, percolation to groundwater, and evapotranspiration. Prior to development, known as predevelopment conditions, up to half of the annual rainfall infiltrates into the native soils. In contrast, after development, known as post-development conditions, developed areas can generate up to four times the amount ofannual runoff and one-third the infiltration rate of natural areas. This change in conditions leads to increased erosion, reduced groundwater recharge, degraded water quality, and diminished stream flow. Traditional engineering approaches to stormwater management typically use concrete detention ponds and channels to convey runoff rapidly from developed surfaces into drainage systems, discharging large volumes of stormwater and pollutants to downstream surface waters, consume land and prevent infiltration. As a result, stormwater runoff from developed land is a significant source of many water quality, stream morphology, and ecological impairments. Reducing the overall imperviousness and using the natural drainage features of a site are important design strategies to maintain or enhance the baseline hydrologic functions of a site after development. This can be achieved by applying sustainable stormwater management (SSWM) practices, which replicate natural hydrologic processes and reduce the disruptive effects of urban development and runoff. SSWM has emerged as an altemative stormwater management approach that is complementary to conventional stormwater management measures. It is based on many ofthe natural processes found in the environment to treat stormwater runoff, balancing the need for engineered systems in urban development with natural features and treatment processes. -
Missouri River Floodplain from River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St
Hydrogeomorphic Evaluation of Ecosystem Restoration Options For The Missouri River Floodplain From River Mile (RM) 670 South of Decatur, Nebraska to RM 0 at St. Louis, Missouri Prepared For: U. S. Fish and Wildlife Service Region 3 Minneapolis, Minnesota Greenbrier Wetland Services Report 15-02 Mickey E. Heitmeyer Joseph L. Bartletti Josh D. Eash December 2015 HYDROGEOMORPHIC EVALUATION OF ECOSYSTEM RESTORATION OPTIONS FOR THE MISSOURI RIVER FLOODPLAIN FROM RIVER MILE (RM) 670 SOUTH OF DECATUR, NEBRASKA TO RM 0 AT ST. LOUIS, MISSOURI Prepared For: U. S. Fish and Wildlife Service Region 3 Refuges and Wildlife Minneapolis, Minnesota By: Mickey E. Heitmeyer Greenbrier Wetland Services Advance, MO 63730 Joseph L. Bartletti Prairie Engineers of Illinois, P.C. Springfield, IL 62703 And Josh D. Eash U.S. Fish and Wildlife Service, Region 3 Water Resources Branch Bloomington, MN 55437 Greenbrier Wetland Services Report No. 15-02 December 2015 Mickey E. Heitmeyer, PhD Greenbrier Wetland Services Route 2, Box 2735 Advance, MO 63730 www.GreenbrierWetland.com Publication No. 15-02 Suggested citation: Heitmeyer, M. E., J. L. Bartletti, and J. D. Eash. 2015. Hydrogeomorphic evaluation of ecosystem restoration options for the Missouri River Flood- plain from River Mile (RM) 670 south of Decatur, Nebraska to RM 0 at St. Louis, Missouri. Prepared for U. S. Fish and Wildlife Service Region 3, Min- neapolis, MN. Greenbrier Wetland Services Report 15-02, Blue Heron Conservation Design and Print- ing LLC, Bloomfield, MO. Photo credits: USACE; http://statehistoricalsocietyofmissouri.org/; Karen Kyle; USFWS http://digitalmedia.fws.gov/cdm/; Cary Aloia This publication printed on recycled paper by ii Contents EXECUTIVE SUMMARY .................................................................................... -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
ECHO SOUNDING CORRECTIONS (Article Handed to the I
ECHO SOUNDING CORRECTIONS (Article handed to the I. H. B. by the U .S.S.R. Delegation of Observers at the Vllth International Hydrographic Conference) In the Soviet Union frequent use is made of echo sounders in routine hydrographic surveying, and all important surveys are carried out with the help of echo sounding apparatus. Depths recorded on echograms as well as depths entered in the sounding log must be corrected for a value which is the result of the algebraic addition of two partial corrections as follows : A Z f : correction for (( level error » A Z : conection of echo À When the value of the total correction is less than half the sounding accuracy, it is disregarded. The maximum tolerance figures allowed in sounding are shown below : From 0 to 20 m. : 0.4 m 21 to 50 m. : 0.7 m 51 to 100 m. : 1.5 m 101 and over :2 % of sounding depth Correction for level error. — The correction for the « error in level » is computed according to the following formula : A Z f = n _ f (1) n : reading of nearest tide gauge, corresponding to datum level determined; f : reading of tide gauge at time of taking soundings. Echo correction. — The depths determined by echo sounding must be subjected to corrections which are obtained as follows : (a) Immediately determined by calibration, or (b) According to the hydrological data available. I. — D etermination o f corrections b y calibration When determining echo corrections by calibration, the soundings are corrected as follows : (1) Determination of total correction A Z T in sounding area by calibration of echo sounding machine ; (2) A Z n correction for difference in speed of rotation of indicator disk with respect to speed determined during calibration ; The A Z q correction is applied when the number of revolutions of the indicator disk differs by more than 1 % during sounding operations from the value obtained during the initial calibration.