An Index Concentration Method for Suspended Load Monitoring in Large Rivers of the Amazonian Foreland
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Drainage-Design-Manual.Pdf
City of El Paso Engineering Department Drainage Design Manual May 2Ol3 City of El Paso-Engineering Department Drainage Design Manual 19. Green Infrostruclure - OPTIONAL 19. Green Infrastructure - OPTIONAL 19.1. Background and Purpose Development and urbanization alter and inhibit the natural hydrologic processes of surface water infiltration, percolation to groundwater, and evapotranspiration. Prior to development, known as predevelopment conditions, up to half of the annual rainfall infiltrates into the native soils. In contrast, after development, known as post-development conditions, developed areas can generate up to four times the amount ofannual runoff and one-third the infiltration rate of natural areas. This change in conditions leads to increased erosion, reduced groundwater recharge, degraded water quality, and diminished stream flow. Traditional engineering approaches to stormwater management typically use concrete detention ponds and channels to convey runoff rapidly from developed surfaces into drainage systems, discharging large volumes of stormwater and pollutants to downstream surface waters, consume land and prevent infiltration. As a result, stormwater runoff from developed land is a significant source of many water quality, stream morphology, and ecological impairments. Reducing the overall imperviousness and using the natural drainage features of a site are important design strategies to maintain or enhance the baseline hydrologic functions of a site after development. This can be achieved by applying sustainable stormwater management (SSWM) practices, which replicate natural hydrologic processes and reduce the disruptive effects of urban development and runoff. SSWM has emerged as an altemative stormwater management approach that is complementary to conventional stormwater management measures. It is based on many ofthe natural processes found in the environment to treat stormwater runoff, balancing the need for engineered systems in urban development with natural features and treatment processes. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load
fluids Article Field Studies and 3D Modelling of Morphodynamics in a Meandering River Reach Dominated by Tides and Suspended Load Qiancheng Xie 1,* , James Yang 2,3 and T. Staffan Lundström 1 1 Division of Fluid and Experimental Mechanics, Luleå University of Technology, 97187 Luleå, Sweden; [email protected] 2 Vattenfall AB, Research and Development, Hydraulic Laboratory, 81426 Älvkarleby, Sweden; [email protected] 3 Resources, Energy and Infrastructure, Royal Institute of Technology, 10044 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +4672-2870-381 Received: 9 December 2018; Accepted: 20 January 2019; Published: 22 January 2019 Abstract: Meandering is a common feature in natural alluvial streams. This study deals with alluvial behaviors of a meander reach subjected to both fresh-water flow and strong tides from the coast. Field measurements are carried out to obtain flow and sediment data. Approximately 95% of the sediment in the river is suspended load of silt and clay. The results indicate that, due to the tidal currents, the flow velocity and sediment concentration are always out of phase with each other. The cross-sectional asymmetry and bi-directional flow result in higher sediment concentration along inner banks than along outer banks of the main stream. For a given location, the near-bed concentration is 2−5 times the surface value. Based on Froude number, a sediment carrying capacity formula is derived for the flood and ebb tides. The tidal flow stirs the sediment and modifies its concentration and transport. A 3D hydrodynamic model of flow and suspended sediment transport is established to compute the flow patterns and morphology changes. -
Particle Size Distribution Controls the Threshold Between Net Sediment
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Particle Size Distribution Controls the Threshold Between 10.1002/2017GL076489 Net Sediment Erosion and Deposition in Suspended Key Points: Load Dominated Flows • New flow power sediment entrainment model scales with flow R. M. Dorrell1 , L. A. Amy2, J. Peakall3, and W. D. McCaffrey3 depth instead of particle size and incorporates capacity and 1Energy and Environment Institute, University of Hull, Hull, UK, 2School of Earth Sciences, University College Dublin, Dublin, competence limits 3 • Suspended load, at the threshold Ireland, School of Earth and Environment, University of Leeds, Leeds, UK between net erosion and deposition, is shown to be controlled by the particle size distribution Abstract The central problem of describing most environmental and industrial flows is predicting when • Flow power model offers an order of material is entrained into, or deposited from, suspension. The threshold between erosional and magnitude, or better, improvement in fl predicting the erosional-depositional depositional ow has previously been modeled in terms of the volumetric amount of material transported in threshold suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow’s ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a fi Supporting Information: new particle entrainment function, where erosion is de ned in terms of the power used to lift mass from the • Table S1 bed. While current suspended load transport models commonly use a single characteristic particle size, • Supporting Information SI the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow. -
Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington
77 TFW-SH7-94-001 Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington Final Report By Matthew O’Connor and R. Dennis Harr October 1994 BEDLOAD TRANSPORT AND LARGE ORGANIC DEBRIS IN STEEP MOUNTAIN STREAMS IN FORESTED WATERSHEDS ON THE OLYMPIC PENINSULA, WASHINGTON FINAL REPORT Submitted by Matthew O’Connor College of Forest Resources, AR-10 University of Washington Seattle, WA 98195 and R. Dennis Harr Research Hydrologist USDA Forest Service Pacific Northwest Research Station and Professor, College of Forest Resources University of Washington Seattle, WA 98195 to Timber/Fish/Wildlife Sediment, Hydrology and Mass Wasting Steering Committee and State of Washington Department of Natural Resources October 31, 1994 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGEMENTS vii OVERVIEW 1 INTRODUCTION 2 BACKGROUND 3 Sediment Routing in Low-Order Channels 3 Timber/Fish/Wildlife Literature Review of Sediment Dynamics in Low-order Streams 5 Conceptual Model of Bedload Routing 6 Effects of Timber Harvest on LOD Accumulation Rates 8 MONITORING SEDIMENT TRANSPORT IN LOW-ORDER CHANNELS 11 Monitoring Objectives 11 Field Sites for Monitoring Program 12 BEDLOAD TRANSPORT MODEL 16 Model Overview 16 Stochastic Model Outputs from Predictive Relationships 17 24-Hour Precipitation 17 Synthesis of Frequency of Threshold 24-Hour Precipitation 18 Peak Discharge as a Function of 24-Hour Precipitation 21 Excess Unit Stream Power as a Function of Peak Discharge 28 Mean Scour -
Delft Hydraulics
Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT Report November 2004 Z3748.00 WL | delft hydraulics Prepared for: DG Rijkswaterstaat, Rijksinstituut voor Kust en Zee | RIKZ Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE FINAL REPORT L.C. van Rijn, D.J.R. Walstra and M. van Ormondt Report Z3748.10 WL | delft hydraulics CLIENT: DG Rijkswaterstaat Rijks-Instituut voor Kust en Zee | RIKZ TITLE: Description of TRANSPOR2004 and Implementation in Delft3D-ONLINE, FINAL REPORT ABSTRACT: In 2003 much effort has been spent in the improvement of the DELFT3D-ONLINE model based on the engineering sand transport formulations of the TRANSPOR2000 model (TR2000). This work has been described in Delft Hydraulics Report Z3624 by Van Rijn and Walstra (2003). However, the engineering sand transport model TR2000 has recently been updated into the TR2004 model within the EU-SANDPIT project. The most important improvements involve the refinement of the predictors for the bed roughness and the suspended sediment size. Up to now these parameters had to be specified by the user of the models. As a consequence of the use of predictors for bed roughness and suspended sediment size, it was necessary to recalibrate the reference concentration of the suspended sediment concentration profile. The formulations (including the newly derived formulations of TR2004) implemented in this 3D-model are described in detail. The implementation of TR2004 in Delft3D-ONLINE is part of an update of Delft3D which involves among others: the extension of the model to be run in profile mode, the synchronisation of the roughness formulations and inclusion of two breaker delay concepts. -
Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang
Chapter Formulae of Sediment Transport in Unsteady Flows (Part 2) Shu-Qing Yang Abstract Sediment transport (ST) in unsteady flows is a complex phenomenon that the existing formulae are often invalid to predict. Almost all existing ST formulae assume that sediment transport can be fully determined by parameters in streamwise direc- tion without parameters in vertical direction. Different from this assumption, this paper highlights the importance of vertical motion and the vertical velocity is suggested to represent the vertical motion. A connection between unsteadiness and vertical velocity is established. New formulae in unsteady flows have been developed from inception of sediment motion, sediment discharge to suspension’s Rouse num- ber. It is found that upward vertical velocity plays an important role for sediment transport, its temporal and spatial alternations are responsible for the phase lag phenomenon and bedform formation. Reasonable agreement between the measured and the proposed conceptual model was achieved. Keywords: unsteady flow, shields number, rouse number, sediment transport, vertical velocity 1. Introdution Sediment transport is the movement of solid particles driven by fluid like water or wind in rivers, lakes, reservoirs, coastal waters. Generally, in the real world the flow is unsteady like flood waves, tidal waves and wind waves, because steady and uniform flows are very rare in reality. Even so, it is understandable that sediment transport is first observed under well controlled conditions in laboratory, and then the data are collected to calibrate the models. These formulae are further examined using field data by assuming the laboratory flow conditions (generally steady and uniform flows) can be extended to rivers and coastal waters (generally unsteady and non-uniform). -
Two-Phase Modeling of Granular Sediment for Sheet Flows and Scour
TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Laurent Olivier Amoudry January 2008 c 2008 Laurent Olivier Amoudry ALL RIGHTS RESERVED TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. Laurent Olivier Amoudry, Ph.D. Cornell University 2008 Even though sediment transport has been studied extensively in the past decades, not all physical processes involved are yet well understood and repre- sented. This results in a modeling deficiency in that few models include complete and detailed descriptions of the necessary physical processes and in that mod- els that do usually focus on the specific case of sheet flows. We seek to address this modeling issue by developing a model that would describe appropriately the physics and would not only focus on sheet flows. To that end, we employ a two-phase approach, for which concentration- weighted averaged equations of motion are solved for a sediment and a fluid phase. The two phases are assumed to only interact through drag forces. The correlations between fluctuating quantities are modeled using the turbulent viscosity and the gradient diffusion hypotheses. The fluid turbulent stresses are calculated using a modified k−ε model that accounts for the two-way particle-turbulence interaction, and the sediment stresses are calculated using a collisional granular flow theory. This approach is used to study three different problems: dilute flow modeling, sheet flows and scouring. In dilute models sediment stresses are neglected. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
A Two-Phase Flow Model of Sediment Transport: Transition from Bedload To
J. Fluid Mech. (2014), vol. 755, pp. 561–581. c Cambridge University Press 2014 561 doi:10.1017/jfm.2014.422 A two-phase flow model of sediment transport: transition from bedload to suspended load Filippo Chiodi1, Philippe Claudin1 and Bruno Andreotti1, † 1Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France (Received 7 December 2013; revised 2 May 2014; accepted 21 July 2014) The transport of dense particles by a turbulent flow depends on two dimensionless numbers. Depending on the ratio of the shear velocity of the flow to the settling velocity of the particles (or the Rouse number), sediment transport takes place in a thin layer localized at the surface of the sediment bed (bedload) or over the whole water depth (suspended load). Moreover, depending on the sedimentation Reynolds number, the bedload layer is embedded in the viscous sublayer or is larger. We propose here a two-phase flow model able to describe both viscous and turbulent shear flows. Particle migration is described as resulting from normal stresses, but is limited by turbulent mixing and shear-induced diffusion of particles. Using this framework, we theoretically investigate the transition between bedload and suspended load. Key words: alluvial dynamics, multiphase and particle-laden flows, particle/fluid flow 1. Introduction When a sedimentary bed is sheared by a water flow of sufficient strength, the particles are entrained into motion. In a homogeneous and steady situation, the fluid flow can be characterized by a unique quantity: the shear velocity u . -
Suspended Sediment Concentration Profiles in the Bottom Boundary Layer
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1993 Suspended sediment concentration profiles in the bottom boundary layer Jingping Xu College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Geology Commons, and the Oceanography Commons Recommended Citation Xu, Jingping, "Suspended sediment concentration profiles in the bottom boundary layer" (1993). Dissertations, Theses, and Masters Projects. Paper 1539616914. https://dx.doi.org/doi:10.25773/v5-55tq-zj21 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Synthesis of Analytical and Field Data on Sediment Transport Over an Active Bay Shoal AF Nielsen and BG Williams
Coasts & Ports 2017 Conference – Cairns, 21-23 June 2017 Synthesis of Analytical and Field Data on Sediment Transport over an Active Bay Shoal AF Nielsen and BG Williams Synthesis of Analytical and Field Data on Sediment Transport over an Active Bay Shoal Alexander F. Nielsen1 and Benjamin G. Williams1 1 Advisian WorleyParsons, North Sydney NSW, AUSTRALIA. email: [email protected] Abstract This paper reports field measurements of bed and suspended load transport of marine sand measured in- situ on a bay shoal over several spring tides and relates these to analytical assessments of van Rijn. The synthesis of the field and analytical data aims to calibrate the analytical models, providing additional insight on bed-load transport thicknesses, bed load and suspended sediment concentrations. The field study site comprised a sand shoal featuring large sand waves attesting to high sediment transport rates under strong tidal flows. Bed load transport data comprised velocities using a combination of ADCP acoustic and GPS technologies. Bed sediments were sampled and tested for grain size distribution and fall velocities. Suspended transport data comprised ADCP backscatter information with suspended sediment sampling. Some 20,000 data points comprising depth-averaged and bed load velocities and backscatter data have been processed with fall velocity and sieved grain size data. The results inform the goodness of fit of the analytical approaches and the scale of the natural random scatter in field measurements. Keywords: bed load; suspended sediment transport; ADCP; GPS; van Rijn. 1. Introduction This paper reports field measurements of bed and suspended load transport of marine sand measured in-situ on a bay shoal over several spring tides and relates these to analytical assessments of van Rijn [4] [5] [6] [7] [8] [9].