Fast Algorithms for 3-D Dominance Reporting and Counting

Total Page:16

File Type:pdf, Size:1020Kb

Fast Algorithms for 3-D Dominance Reporting and Counting Fast Algorithms for D Dominance Rep orting and Counting Qingmin Shi and Joseph JaJa Institute for Advanced Computer Studies Department of Electrical and Computer Engineering University of Maryland Col lege Park MD fqshijosephumiacsumdedug January Abstract We present in this pap er fast algorithms for the D dominance rep orting and counting problems and generalize the results to the ddimensional case Our D dominance rep orting algorithm achieves O log n log log n f query time using O n log n space where f is the numb er of p oints satisfying the query and is an arbitrary small constant For the D dominance counting problem whichisequivalent to the D range counting problem our algorithm runs in O log n log log n time using O nl og n log log n space Intro duction d Let S be a set of n points in Thedominancereporting problem is to store S in a data structure so that the subset Q of p oints in S that dominate an arbitrarily given p oint q can b e rep orted ecientlyGiven two p oints p p p p andq q q q we d d say p dominates q if and only if p q for all i d Another related problem is the i i dominancecounting problem In this problem the size k of Q only needs to b e rep orted Many computational geometry problems such as the rectangle intersection problems can b e reduced to the dominance search problem In this pap er weprovide faster algorithms than previously known for b oth the D dominance rep orting and counting problems Our mo del of computation is the RAM mo del as mo died byFredman and Willard In this mo del it is assumed that eachword is of w size w and that the numb er of data elements n never exceeds that is w log nIn addition arithmetic and bitwise logical op erations take constanttime Before outlining our results we give a brief overview of related literature The D dom inance rep orting is a sp ecial case of the D orthogonal range search problem Hence results Supp orted in part by the National Science Foundation through the National Partnership for Advanced Computational Infrastructure NPACI DoDMD Pro curement under contract MDAC and NASA under the ESIP Program NCC for orthogonal range search apply immediately to our problem In particular a class of algorithms for orthogonal range rep orting uses constant time for each rep orted p ointand p olylogarithmic search time see for example The b est known result for D orthogonal range search is given by Alstrup and Bro dal whichachieves O n log n space and O log n f query time Several other data structures use less space but require larger query time In Chazelle gives two data structures one with query time O log n f log log n f and using space O n log n log log n and the other with query time O log n f log nf and using O n log n space The b est known dominance rep ort ing algorithm is due to Makris and Tsakalidis whichfollows the approach of Chazelle and Edelsbrunner and achieves linear space and O log n f query time Unlike dominance rep orting which seems to b e inherently simpler than general orthogo nal range rep orting the dominance counting problem is equivalent to the orthogonal range counting problem if the dimension d is assumed to b e constant Indeed it is easy to show that if a data structure of size O sn exists for answering any ddimensional dominance counting query in O tn time then any ddimensional range counting query can b e an d d swered with O sn space and using O tn query time Not many results are known for the multidimensional dominance counting problem In Chazelle uses a compressed form of the range tree to achieve O log n query time and O n space for the D dominance counting problem This result easily leads to a solution to the D dominance counting with O n log n space and O log n query time On the other hand we can reduce the counting query problem to the aggregation range query problem in the same dimension by assign ingaweight of to eachpoint Willard in shows howtocombine the fusion tree and its variant called the q heaps and the fractional cascading technique to achieve O n log n space and O log n log log n query time to handle D aggregation range queries where is arbitrarily small constant In this pap er we establish the following results that provide faster algorithms for D dominance rep orting and counting An algorithm for threesided D range rep orting that achieves O n space and O log n log log n f query time This result is similar to Willards mo dication of priority tree but the algorithm is much simpler This algorithm plays an imp ortant role in our D dominance rep orting algorithm An algorithm for D dominance rep orting that uses O n log n space and O log n log log n f query time where f is the number of points satisfying the query An algorithm for D dominance counting problem whichusesO n log n space and runs in O log n log log n query time This algorithm can b e seen as an improvement on the query time over Chazelles algorithm at the exp ense of O log n additional space An extension of the D dominance counting algorithm and D dominance rep orting d algorithm to multidimensional dominance search which leads to an O log n log log n d query time and O n log nlog n log log n space algorithm for the counting case d d and an O log n log log n f query time and O n log nlog n log log n space algorithm for the rep orting case where d is the numb er of dimensions and d for the counting case and d for the rep orting case In Section we briey discuss several known techniques used heavily in this pap er The threesided D range rep orting algorithm is describ ed in Section while the description of our D dominance rep orting algorithm is given in Section Our D dominance count ing algorithm is describ ed in Section Results in Sections and are extended to the multidimensional case in Section Preliminaries Toavoid tedious details in describing the algorithms we assume for the rest of this pap er that no two p oints have the same co ordinate in any dimension For simplicitywe call the p oint with the largest xco ordinate smaller than or equal to a real number r the xpredecessor of r and the one with the smallest xco ordinate larger than or equal to r the xsuccessor of r The y and zpredecessorssuccessors are dened similarly Cartesian Trees Cartesian trees dened over a nite set of D p oints were rst intro duced byVuillemin Let p p p be a set of n D p oints sorted by their xco ordinates The corresp onding n Cartesian tree C is dened recursively as follows Let p b e the p oint with the largest y i co ordinate Then p is asso ciated with the ro ot r of C The left child of r is the ro ot of the i Cartesian tree built on p p and the rightchild of r is the ro ot of the Cartesian tree i built on p p The leftright child do es exist if i n We call such a Cartesian i n tree an x y Cartesian tree An imp ortant prop erty of the Cartesian tree is given by the following observation Observation Consider a set S of D points and the corresponding x y Cartesian tree C Let x x be the xcoordinates of two points in S and let and be their respective vertices Then the point with the largest ycoordinate among those whose xcoordinates are between x and x is stored in the nearest common ancestor nca of and Fractional Cascading Supp ose wehave a tree T of b ounded degree c and ro oted at no de r suchthateachnode v contains a list Lv of sorted elements Let n b e the total size of all the lists stored in T and let F b e an arbitrary forest with p no des consisting of subtrees of T determined by some of the children of r F may b e sp ecied on line ie not necessarily known during the prepro cessing step The following lemma is a direct derivation from the one given by Chazelle and Guibas for identifying all the successors of a value g in the lists stored in F Lemma There exits a linear size fractional cascading data structure that can beusedto determine the successors of a given item g in the lists storedin F in O p log c tn time where tn is the time it takes to identify the successor of g in Lr A simple way to implement the fractional cascading strategy is to use augmented lists For eachnode v in T we store in addition to Lv another sorted list L v called the augmented list which consists of elements in the lists asso ciated with b oth v and its children We asso ciate with each element e in L v c pointers One p ointer called the intranode pointerpoints to the successor of e in Lv while the other c internode pointers each p oints to the successor of e in the augmented lists asso ciated with a dierentchild of v Let v be an internal no de and u b e its j th child starting from the left If weknow the successor e v of g in L v then by following the j th interno de p ointer asso ciated with e we can obtain v the successor e of g in L u The successor of g in Lu is then obtained by following the u intrano de p ointer asso ciated with e Note that this works correctly since Lu is a subset u of L u Since each element is stored at most twice and there are c pointers asso ciated with each element the storage cost of this scheme is O cn where n is the total size of all the lists Wethus haveavariation of the fractional cascading structure which allows constanttime lo okup in nonro ot no des Wecallitfast fractional cascading and the linearspace fractional cascading structure compact fractional cascading Lemma The fast fractional cascading structure al lows the identication of the successors of a given item g in the lists storedin F in O p tn time where tn is the
Recommended publications
  • Interval Trees Storing and Searching Intervals
    Interval Trees Storing and Searching Intervals • Instead of points, suppose you want to keep track of axis-aligned segments: • Range queries: return all segments that have any part of them inside the rectangle. • Motivation: wiring diagrams, genes on genomes Simpler Problem: 1-d intervals • Segments with at least one endpoint in the rectangle can be found by building a 2d range tree on the 2n endpoints. - Keep pointer from each endpoint stored in tree to the segments - Mark segments as you output them, so that you don’t output contained segments twice. • Segments with no endpoints in range are the harder part. - Consider just horizontal segments - They must cross a vertical side of the region - Leads to subproblem: Given a vertical line, find segments that it crosses. - (y-coords become irrelevant for this subproblem) Interval Trees query line interval Recursively build tree on interval set S as follows: Sort the 2n endpoints Let xmid be the median point Store intervals that cross xmid in node N intervals that are intervals that are completely to the completely to the left of xmid in Nleft right of xmid in Nright Another view of interval trees x Interval Trees, continued • Will be approximately balanced because by choosing the median, we split the set of end points up in half each time - Depth is O(log n) • Have to store xmid with each node • Uses O(n) storage - each interval stored once, plus - fewer than n nodes (each node contains at least one interval) • Can be built in O(n log n) time. • Can be searched in O(log n + k) time [k = #
    [Show full text]
  • Augmentation: Range Trees (PDF)
    Lecture 9 Augmentation 6.046J Spring 2015 Lecture 9: Augmentation This lecture covers augmentation of data structures, including • easy tree augmentation • order-statistics trees • finger search trees, and • range trees The main idea is to modify “off-the-shelf” common data structures to store (and update) additional information. Easy Tree Augmentation The goal here is to store x.f at each node x, which is a function of the node, namely f(subtree rooted at x). Suppose x.f can be computed (updated) in O(1) time from x, children and children.f. Then, modification a set S of nodes costs O(# of ancestors of S)toupdate x.f, because we need to walk up the tree to the root. Two examples of O(lg n) updates are • AVL trees: after rotating two nodes, first update the new bottom node and then update the new top node • 2-3 trees: after splitting a node, update the two new nodes. • In both cases, then update up the tree. Order-Statistics Trees (from 6.006) The goal of order-statistics trees is to design an Abstract Data Type (ADT) interface that supports the following operations • insert(x), delete(x), successor(x), • rank(x): find x’s index in the sorted order, i.e., # of elements <x, • select(i): find the element with rank i. 1 Lecture 9 Augmentation 6.046J Spring 2015 We can implement the above ADT using easy tree augmentation on AVL trees (or 2-3 trees) to store subtree size: f(subtree) = # of nodes in it. Then we also have x.size =1+ c.size for c in x.children.
    [Show full text]
  • Advanced Data Structures
    Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10
    [Show full text]
  • Search Trees
    Lecture III Page 1 “Trees are the earth’s endless effort to speak to the listening heaven.” – Rabindranath Tagore, Fireflies, 1928 Alice was walking beside the White Knight in Looking Glass Land. ”You are sad.” the Knight said in an anxious tone: ”let me sing you a song to comfort you.” ”Is it very long?” Alice asked, for she had heard a good deal of poetry that day. ”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it - either it brings tears to their eyes, or else -” ”Or else what?” said Alice, for the Knight had made a sudden pause. ”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’” ”Oh, that’s the name of the song, is it?” Alice said, trying to feel interested. ”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name is called. The name really is ’The Aged, Aged Man.’” ”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself. ”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s only what it’s called, you know!” ”Well, what is the song then?” said Alice, who was by this time completely bewildered. ”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the tune’s my own invention.” So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time with one hand, and with a faint smile lighting up his gentle, foolish face, he began..
    [Show full text]
  • Computational Geometry: 1D Range Tree, 2D Range Tree, Line
    Computational Geometry Lecture 17 Computational geometry Algorithms for solving “geometric problems” in 2D and higher. Fundamental objects: point line segment line Basic structures: point set polygon L17.2 Computational geometry Algorithms for solving “geometric problems” in 2D and higher. Fundamental objects: point line segment line Basic structures: triangulation convex hull L17.3 Orthogonal range searching Input: n points in d dimensions • E.g., representing a database of n records each with d numeric fields Query: Axis-aligned box (in 2D, a rectangle) • Report on the points inside the box: • Are there any points? • How many are there? • List the points. L17.4 Orthogonal range searching Input: n points in d dimensions Query: Axis-aligned box (in 2D, a rectangle) • Report on the points inside the box Goal: Preprocess points into a data structure to support fast queries • Primary goal: Static data structure • In 1D, we will also obtain a dynamic data structure supporting insert and delete L17.5 1D range searching In 1D, the query is an interval: First solution using ideas we know: • Interval trees • Represent each point x by the interval [x, x]. • Obtain a dynamic structure that can list k answers in a query in O(k lg n) time. L17.6 1D range searching In 1D, the query is an interval: Second solution using ideas we know: • Sort the points and store them in an array • Solve query by binary search on endpoints. • Obtain a static structure that can list k answers in a query in O(k + lg n) time. Goal: Obtain a dynamic structure that can list k answers in a query in O(k + lg n) time.
    [Show full text]
  • Range Searching
    Range Searching ² Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Y Q X ² Depends on type of objects and queries. Consider basic data structures with broad applicability. ² Time-Space tradeoff: the more we preprocess and store, the faster we can solve a query. ² Consider data structures with (nearly) linear space. Subhash Suri UC Santa Barbara Orthogonal Range Searching ² Fix a n-point set P . It has 2n subsets. How many are possible answers to geometric range queries? Y 5 Some impossible rectangular ranges 6 (1,2,3), (1,4), (2,5,6). 1 4 Range (1,5,6) is possible. 3 2 X ² Efficiency comes from the fact that only a small fraction of subsets can be formed. ² Orthogonal range searching deals with point sets and axis-aligned rectangle queries. ² These generalize 1-dimensional sorting and searching, and the data structures are based on compositions of 1-dim structures. Subhash Suri UC Santa Barbara 1-Dimensional Search ² Points in 1D P = fp1; p2; : : : ; png. ² Queries are intervals. 15 71 3 7 9 21 23 25 45 70 72 100 120 ² If the range contains k points, we want to solve the problem in O(log n + k) time. ² Does hashing work? Why not? ² A sorted array achieves this bound. But it doesn’t extend to higher dimensions. ² Instead, we use a balanced binary tree. Subhash Suri UC Santa Barbara Tree Search 15 7 24 3 12 20 27 1 4 9 14 17 22 25 29 1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31 u v xlo =2 x hi =23 ² Build a balanced binary tree on the sorted list of points (keys).
    [Show full text]
  • I/O-Efficient Spatial Data Structures for Range Queries
    I/O-Efficient Spatial Data Structures for Range Queries Lars Arge Kasper Green Larsen MADALGO,∗ Department of Computer Science, Aarhus University, Denmark E-mail: [email protected],[email protected] 1 Introduction Range reporting is a one of the most fundamental topics in spatial databases and computational geometry. In this class of problems, the input consists of a set of geometric objects, such as points, line segments, rectangles etc. The goal is to preprocess the input set into a data structure, such that given a query range, one can efficiently report all input objects intersecting the range. The ranges most commonly considered are axis-parallel rectangles, halfspaces, points, simplices and balls. In this survey, we focus on the planar orthogonal range reporting problem in the external memory model of Aggarwal and Vitter [2]. Here the input consists of a set of N points in the plane, and the goal is to support reporting all points inside an axis-parallel query rectangle. We use B to denote the disk block size in number of points. The cost of answering a query is measured in the number of I/Os performed and the space of the data structure is measured in the number of disk blocks occupied, hence linear space is O(N=B) disk blocks. Outline. In Section 2, we set out by reviewing the classic B-tree for solving one- dimensional orthogonal range reporting, i.e. given N points on the real line and a query interval q = [q1; q2], report all T points inside q. In Section 3 we present optimal solutions for planar orthogonal range reporting, and finally in Section 4, we briefly discuss related range searching problems.
    [Show full text]
  • Parallel Range, Segment and Rectangle Queries with Augmented Maps
    Parallel Range, Segment and Rectangle Queries with Augmented Maps Yihan Sun Guy E. Blelloch Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] Abstract The range, segment and rectangle query problems are fundamental problems in computational geometry, and have extensive applications in many domains. Despite the significant theoretical work on these problems, efficient implementations can be complicated. We know of very few practical implementations of the algorithms in parallel, and most implementations do not have tight theoretical bounds. In this paper, we focus on simple and efficient parallel algorithms and implementations for range, segment and rectangle queries, which have tight worst-case bound in theory and good parallel performance in practice. We propose to use a simple framework (the augmented map) to model the problem. Based on the augmented map interface, we develop both multi-level tree structures and sweepline algorithms supporting range, segment and rectangle queries in two dimensions. For the sweepline algorithms, we also propose a parallel paradigm and show corresponding cost bounds. All of our data structures are work-efficient to build in theory (O(n log n) sequential work) and achieve a low parallel depth (polylogarithmic for the multi-level tree structures, and O(n) for sweepline algorithms). The query time is almost linear to the output size. We have implemented all the data structures described in the paper using a parallel augmented map library. Based on the library each data structure only requires about 100 lines of C++ code. We test their performance on large data sets (up to 108 elements) and a machine with 72-cores (144 hyperthreads).
    [Show full text]
  • Lecture Notes of CSCI5610 Advanced Data Structures
    Lecture Notes of CSCI5610 Advanced Data Structures Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong July 17, 2020 Contents 1 Course Overview and Computation Models 4 2 The Binary Search Tree and the 2-3 Tree 7 2.1 The binary search tree . .7 2.2 The 2-3 tree . .9 2.3 Remarks . 13 3 Structures for Intervals 15 3.1 The interval tree . 15 3.2 The segment tree . 17 3.3 Remarks . 18 4 Structures for Points 20 4.1 The kd-tree . 20 4.2 A bootstrapping lemma . 22 4.3 The priority search tree . 24 4.4 The range tree . 27 4.5 Another range tree with better query time . 29 4.6 Pointer-machine structures . 30 4.7 Remarks . 31 5 Logarithmic Method and Global Rebuilding 33 5.1 Amortized update cost . 33 5.2 Decomposable problems . 34 5.3 The logarithmic method . 34 5.4 Fully dynamic kd-trees with global rebuilding . 37 5.5 Remarks . 39 6 Weight Balancing 41 6.1 BB[α]-trees . 41 6.2 Insertion . 42 6.3 Deletion . 42 6.4 Amortized analysis . 42 6.5 Dynamization with weight balancing . 43 6.6 Remarks . 44 1 CONTENTS 2 7 Partial Persistence 47 7.1 The potential method . 47 7.2 Partially persistent BST . 48 7.3 General pointer-machine structures . 52 7.4 Remarks . 52 8 Dynamic Perfect Hashing 54 8.1 Two random graph results . 54 8.2 Cuckoo hashing . 55 8.3 Analysis . 58 8.4 Remarks . 59 9 Binomial and Fibonacci Heaps 61 9.1 The binomial heap .
    [Show full text]
  • Uwaterloo Latex Thesis Template
    In-Memory Storage for Labeled Tree-Structured Data by Gelin Zhou A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Computer Science Waterloo, Ontario, Canada, 2017 c Gelin Zhou 2017 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. Johannes Fischer External Examiner Professor J. Ian Munro Supervisor Professor Meng He Co-Supervisor Assistant Professor Gordon V. Cormack Internal Examiner Professor Therese Biedl Internal Examiner Professor Gordon B. Agnew Internal-external Examiner Associate Professor ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract In this thesis, we design in-memory data structures for labeled and weights trees, so that various types of path queries or operations can be supported with efficient query time. We assume the word RAM model with word size w, which permits random accesses to w-bit memory cells. Our data structures are space-efficient and many of them are even succinct. These succinct data structures occupy space close to the information theoretic lower bounds of the input trees within lower order terms. First, we study the problems of supporting various path queries over weighted trees. A path counting query asks for the number of nodes on a query path whose weights lie within a query range, while a path reporting query requires to report these nodes.
    [Show full text]
  • Adaptive and Approximate Orthogonal Range Counting∗
    Adaptive and Approximate Orthogonal Range Counting∗ Timothy M. Chany Bryan T. Wilkinsonz Abstract The model we use in this paper is the standard w- We present three new results on one of the most basic bit word RAM [15]. In this model, the coordinates of problems in geometric data structures, 2-D orthogonal range the points of P and the vertices of Q are taken from counting. All the results are in the w-bit word RAM model. a fixed-size universe [U] = f1;:::;Ug. Furthermore, • It is well known that there are linear-space data struc- operations on single words take constant time, and it tures for 2-D orthogonal range counting with worst- is assumed that w = Ω(log U) and w = Ω(log n) so case optimal query time O(logw n). We give an O(n log log n)-space adaptive data structure that im- that any coordinate or index into the input array fits proves the query time to O(log log n + logw k), where in a single word. Bounds on the space requirements k is the output count. When k = O(1), our bounds match the state of the art for the 2-D orthogonal of data structures are given in words, unless stated range emptiness problem [Chan, Larsen, and P˘atra¸scu, otherwise. We will assume that U = O(n), since we SoCG 2011]. can operate in rank space [16] (i.e., replace coordinates • We give an O(n log log n)-space data structure for ap- of points with their ranks), at the expense of performing proximate 2-D orthogonal range counting that can com- an initial predecessor search during each query.
    [Show full text]
  • Rt0 RANGE TREES and PRIORITY SEARCH TREES Hanan Samet
    rt0 RANGE TREES AND PRIORITY SEARCH TREES Hanan Samet Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland College Park, Maryland 20742 e-mail: [email protected] Copyright © 1998 Hanan Samet These notes may not be reproduced by any means (mechanical or elec- tronic or any other) without the express written permission of Hanan Samet rt1 RANGE TREES • Balanced binary search tree • All data stored in the leaf nodes • Leaf nodes linked in sorted order by a doubly-linked list • Searching for [B : E] 1. find node with smallest value ≥B or largest ≤B 2. follow links until reach node with value >E • O (log2 N +F ) time to search, O (N · log2 N ) to build, and O (N ) space for N points and F answers • Ex: sort points in 2-d on their x coordinate value 55 ≤ ≥ 30 83 15 43 70 88 5 25355060808590 Denver Omaha Chicago Mobile Toronto Buffalo Atlanta Miami (5,45) (25,35) (35,40) (50,10) (60,75) (80,65) (85,15) (90,5) Copyright © 1998 by Hanan Samet rt2 2-D RANGE TREES • Binary tree of binary trees • Sort all points along one dimension (say x) and store them in the leaf nodes of a balanced binary tree such as a range tree (single line) • Each nonleaf node contains a 1-d range tree of the points in its subtrees sorted along y (double lines) • Ex: 55 A AA38 A' 13 55 8 25 43 70 30 B 83 C 5 10 15 35 40 45 65 75 38 40 B' C' (5,45) (90,5) (60,75) (25,35) (50,10) (35,40) (80,65) 23 43 (85,15) 10 70 10 35 40 45 5 15 65 75 15 D 43 E 70 F 88 G (90,5) (5,45) (60,75) (35,40) (85,15) (80,65) (50,10) (25,35) 40 D' 25 E' 70 F' 10 G' 5 HI25 35 JK50 60 LM80 85 NO90 (5,45) (25,35) (35,40) (50,10) (60,75) (80,65) (85,15) (90,5) 35 45 10 40 65 75 5 15 (25,35) (5,45) (50,10)(35,40) (80,65)(60,75) (90,5) (85,15) • Actually, don’t need the 1-d range tree in y at the root and at the sons of the root Copyright © 1998 by Hanan Samet 5 4 3 21 rt3 v g z rb SEARCHING 2-D RANGE TREES ([BX:EX],[BY:EY]) 1.
    [Show full text]