Brotia Costula 12
Total Page:16
File Type:pdf, Size:1020Kb
¦³o¼Á¸É¥ªµÎµ®¦´ÎµÂ·®°¥Îʵºª«r Thiaridae Ã¥ µµª´µ Á¸¥¤¤µ¨´¥ µ¦oªoµ°¦³· ¸ÊÁÈ nª®¹É °µ¦«¹¬µµ¤®¨¦¦´ ¼ ·µª¥µ«µ¦¤®µ· ´· µ µªµÁÃ襷 µ¦Á«¸ £µªµ°¤¡· ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸ µ¦«¹¬µ 2553 ¨· ··Í °´ ·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¦³o¼Á¸É¥ªµÎµ®¦´ÎµÂ·®°¥Îʵºª«r Thiaridae Ã¥ µµª´µ Á¸¥¤¤µ¨´¥ µ¦oªoµ°¦³· ¸ÊÁÈ nª®¹É °µ¦«¹¬µµ¤®¨¦¦´ ¼ ·µª¥µ«µ¦¤®µ· ´· µ µªµÁÃ襷 µ¦Á«¸ £µªµ°¤¡· ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸ µ¦«¹¬µ 2553 ¨· ··Í °´ ·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ A WEB - BASED EXPERT SYSTEM FOR IDENTIFICATION OF FRESHWATER SNAILS FAMILY THIARIDAE By Chanunya Neammalai An Independent Study Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Computing Graduate School SILPAKORN UNIVERSITY 2010 ´·ª·¥µ¨´¥ ¤®µª·¥µ¨¥«´ ·¨µ¦ °»¤´·Ä®oµ¦ªo µ°o ·¦³Á¦ºÉ° “¦³ ¼oÁ¸É¥ªµµ®¦Î ´µÂÎ ·®°¥ÊµÎ ºª« r Thiaridae” Á°Ã¥ µµªµ´ Á¸¥¤¤µ¨´¥ ÁȪ®n ¹É °µ¦«¹¬µµ¤®¨´¼¦¦·µª·¥µ«µ¦¤®µ´ · µ µª·µÁÃ襸 µ¦Á« ……........................................................... (¼oª¥«µ¦µµ¦¥n r ¦.µÄ µ¦«ª«´ )r ¸´·ª·¥µ¨´¥ ª´¸É..........Áº°.................... ¡.«........... °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·¦³ °µµ¦¥ r ¦.»¸¥r ¡¬r¡··£·Ã ³¦¦¤µ¦¦ª°µ¦ªo µ°o ·¦³ .................................................... ¦³µ¦¦¤µ¦ (¦°«µ¦µµ¦¥ r ¦.´µ °Á¡n «¦È ¸) ............/......................../.............. .................................................... ¦¦¤µ¦ (°µµ¦¥ r ¦.µ ¦³·¬ª«)r ............/......................../.............. .................................................... ¦¦¤µ¦ (°µµ¦¥ r ¦.»¸¥r ¡¬r¡··£·Ã) ............/......................../.............. 49309310 : µ µª·µÁÃ襵¦Á«¸ εµÎ ´ : ¦³Á¼o ¸É¥ªµ/µ¦¨·/®°¥ª« r Thiaridae µ´ Á¸¥¤¤µ¨´¥ : ¦³Á¼o ¸É¥ªµµ®¦Î ´µÂÎ ·®°¥ÊµÎ ºª« r Thiaridae. °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·¦³ : °.¦.»¸¥r ¡¬r¡··£·Ã. 111 ®oµ. µª·´¥Ê¸ÎµÁ°¦³Á¼o ¸É¥ªµ¸ÉεŦ³¥» Är µo ´ µo ¸ªª·¥µ Ã¥¡µ´ ¦³Á¼o ¸É¥ªµµ®Î ¦´µÂ¦³Á£Î ®°¥ÊµÎ ºª« r Thiaridae (Freshwater Snails Family Thiaridae) ¦³Á¼o ¸É¥ªµ¸É¼¡µ ´ ʹʸµ¤µ¦µÂ¦³Á£®°¥Î ʵΠºª« r Thiaridae Å o 17 · ¼oÁ¸É¥ªµ´ ª·¥µµ®°¥ÊµÎ ºª« r Thiaridae µ¤µ¦Á¡É·¤£µ¡®°¥¸Éo¡Ä®¤Â¨³n Īµ¤¦n¼oÄ®¤Á n µÅĦ³o ¨³µªµ¤¦¼o³¼¦´¦»Ä®o¤´ ¥Ã¥°´ ä´ ´· ¦³¤¸ ¦³ªµ¦®µo µ°Ã¥ÄÎ µ¦°o »¤µÂÁ·®oµ (Forward chaining) ¨³Äµ¦Âo ªµ¤¦¼oĵªµ¤¦¼o ¹É³°¥Ä¦n¼ ¼ IF-THEN-ELSE Rules ¦³¥µ¤µ¦´ ¸É³ª¥Ä®n o¼oÄ®¦o º°Ä¼o ªÇÉ´ ŸÉŤ¤n ¸ªµ¤¦¼oµµ®°¥o ʵΠº ª« r Thiaridae ¨°´ª·´¥µ¤µ¦µÂ¦³Á£ °®°¥ÅÎ °¥µo n ¼°Â¨³¦ªÁ¦o Ȫ Ã¥Äo ¦¼£µ¡ °®°¥¸É¦³ÂŪĮo o ¦³Á¼o ¸É¥ªµµ®¦Î ´µÂÎ · °®°¥ª« r Thiaridae ¸Ê ¼¡µÄ¨´ ¬³Áª´ °¡¡¨È ·Á´ Á¡ºÉ°ªn ¥°µªÎ ¥ªµ¤³ªÄµ¦ÄµÂ¨³µ¤µ¦o ¼ εÅÄĵµ¦Á¦o ¸¥µ¦°µµ µ¸ªª·¥µ®¦º°µ µ°ºÉÇ ¸ÉÁ¥ª ¸É °o ¨ª·´¥ °µ¦¡µ¦³´ Á¼o ¸É¥ªµÂÄ®Á®o Ȫµµ¦n µÂ¦Î ¼£µ¡¦³Á£®°¥Êε ºª« r Thiaridae 17 ·¤¸µªµ¤Â¤¥n n ε 87.42% ¦³··£µ¡ °¦³ªµªµ¤¡´ ¹¡°Ä ° ¼oÄ o ªµ¤¡¹¡°Ä °Á¼o ¸É¥ªµ´ ª·¥µ°¥Ä¦³n¼ ´ ¸ oª¥µÁ¨ n ¸É¥ 4.18 ¨³ªµ¤¡¹¡°Ä ° ¼oÄo´ªÅ°¥É Ħ³n¼ ´ ¸ oª¥µÁ¨ n ¸É¥ 4.24 Ã¥£µ¡¦³¤¸¦³··£µ¡µµ°¥Î nĦ³¼ ´ ¸ oª¥ µÁ¨n ¸É¥ 4.21 £µª·µ°¤¡ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸µ¦«¹¬µ 2553 ¨µ¥¤º°ºÉ°«´ ¹¬µ........................................ ¨µ¥¤º°ºÉ°°µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·¦³ ........................................ 49309310 : MAJOR : INFORMATION TECHNOLOGY KEY WORDS : EXPERT SYSTEM/PRODUCTION RULE/FAMILY THIARIDAE CHANUNYA NEAMMALAI : A WEB - BASED EXPERT SYSTEM FOR IDENTIFICATION OF FRESHWATER SNAILS FAMILY THIARIDAE. INDEPENDENT STUDY ADVISOR : SUNEE PONGPINIGPINYO, Ph.D. 111 pp. This thesis presents an Expert System applied to biology. The system is developed to identify freshwater snails of Family Thiaridae 17 species of including freshwater snails Family Thiaridae. The malacology expert can insert new photos and new knowledge of freshwater snails into the system. The knowledge base will be updated automatically. The inference process in this expert system uses the forward chaining approach and the knowledge is represented in form of production rules. The system is enhanced with photos that assist not only inexperienced users but also researchers in the precise and quick identification of freshwater snails. The system is developed as a web-based expert system so it is easy usage of users and it can be used in education of biology or other subject areas. The expert system developed as a result of this research shows that the accuracy of the images recognition of 17 species of freshwater snails Family Thiaridae is 87.42%. The system performance is measured by user satisfaction. The satisfaction of malacology experts is at good level with average 4.18 and the satisfaction of general users is at good level with average 4.24. Over all the system performance is at good level with average 4.21 Department of Computing Graduate School, Silpakorn University Academic Year 2010 Student's signature ........................................ Independent Study Advisor's signature ........................................ จ ··¦¦¤¦³µ« µ¦ªo µ°o ·¦³´ ʸεÁ¦ÈÅooª¥ªµ¤¦»µ °°µµ¦¥ r ¦.»¸¥r ¡¬r¡··£·Ã °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·¦³ ¹ÉÅÄ®o oε¦¹¬µ ¦¹¬µ o°Ê¸Â³ ¨³ªµ¤ª¥Á®¨n º°Ä ®¨µ¥·É®¨µ¥°¥µ¦³n¨´É »¨ªÅÅ n ooª¥¸ ¼oª·´¥ °¦µ °¡¦³»ÁÈ°¥µn ¼¤µ ¸É¸Ê °¦µ °¡¦³» ¦°«µ¦µµ¦¥ r ¦. ªÁº° Ŧ¨µ« ¨³µµªª·ª·»µ Á¦´¬µ ¸ÉÄ®ªµ¤¦o »µÄ®oªµ¤¦¼o ¨³Á°Êʺ°Á¢º° °¤o ¼¨Á¥ª®°¥¸É ´ ʵΠºª« r Thiaridae °¦µ °¡¦³» ¦°«µ¦µµ¦¥ r ¦.´µ °Á¡n È«¦¸ ¦³µ¦¦¤µ¦ ¦ª°µ¦ªo µ°o ·¦³ ¨³¦¦¤µ¦¼o¦»ª»· °µµ¦¥ r ¦.µ ¦³·¬ª« r ¸ÉÄ®o ªµ¤¦»µÄµ¦ÂÅ o°¡¦°µÇo n n °µª·´¥ °»Â¨³ °Ä ¡¸É Á¡ºÉ° » ¸É°¥µ¤Ånª¥ªµ¤®ªÄo n ¥ ¦ª¤¹¼o¤¸¡¦³» »µn¸É¤·ÅÁ°¥µ¤Åªo n o ¸É¸Ê »µ¥o ʸ ¦µ °¡¦³» ¡°n ¦³¤ª¨Â¨³Â¤n·£µ¡¦ Á¸¥¤¤µ¨´¥ »¡µ¦¸¼oÄ®o»É· »°¥µn ´ ¼oª·´¥ µ¦´ ®oµ ¥°´ n £µ¬µÅ¥........................................................................................................................ ¥°£µ¬µ°´ n §¬´ ................................................................................................................... · ·¦¦¤¦³µ« ........................................................................................................................ µ¦µ¦µ´ ................................................................................................................................ µ¦£µ¡´ ................................................................................................................................... ¸É 1 ε........................................................................................................................... 1 ªµ¤ÁȤµÂ¨³ªµ¤µÎ °´ ´®µ............................................................. 1 ª´»¦³µ¦ªr ·´¥ .......................................................................................... 2 °Á µ¦ª·´¥.................................................................................................. 2 ´Ê°µ¦ª·´¥.................................................................................................. 3 ¦³Ã¥r¸Éµªµ³Ån o¦´................................................................................. 3 µÎ ·¥µ¤«¡´ Á¡µ³r ............................................................................................ 4 §¬¸¸ÉÁ¥ª ¸É °o 2 .......................................................................................................... 5 ªµ¤¦¼o¡ºÊµÁ¥ª¦³¸É ´ Á¼o ¸É¥ªµ............................................................. 5 ªµ¤¦¼oÁ¸É¥ªµ¦´ µÂ®°¥Î ʵΠºª« r Thiaridae ........................................ 31 3 µª·´¥¸ÉÁ¥ª ¸É °o ....................................................................................................... 40 Expert system for pests, diseases and weeds identification in olive crops ........ 40 A diagnostic expert system for honeybee pests................................................. 41 An expert system for tomato diseases................................................................ 43 EXSYS, an Expert System for Diagnosing Flowerbulb Diseases, Pets and Non-parasitic Disorders ........................................................................... 44 AMRAPALIKA : An expert system for the diagnosis of pets, diseases, and disorders in Indian mango........................................................................ 45 Expert System for integrated plant protection in pepper........................................ 46 Insect identification expert system for forest protection.................................... 47 ¸É ®oµ ¦³Á¼o ¸É¥ªµÄµ¦µÂ¨Î ª¥Å¤o o: ¦¸«¹¬µ¨ª¥Å¤o o ¨®ªµ¥ °Å¥» ... 48 ¦³Á¼o ¸É¥ªµµ®¦Î ´µÂ¡Î ´ »rŤÁ¤o º°Å¥.............................................. 48 ¦³Á¼o ¸É¥ªµµ¡§¬»¦¤ª·µ............................................................. 49 4 ª·¸µ¦µÁÎ ·µ......................................................................................................... 51 µ¦°´ ªµ¤¦r ¼o (Knowledge acquisition).................................................... 51 µªµ¤¦¼o (Knowledge Based)......................................................................... 54 µ¦Âªµ¤¦¼o (Knowledge representation)..................................................... 56 ¦³ªµ¦®µÁ®»¨ (Inference Engine) ........................................................ 70 ªn·° n ´ ¼oĦ³o (User Interface) .......................................................... 72 5 ¨µ¦ª·´¥Â¨³°£·¦µ¥¨........................................................................................... 75 µ¦µ Î °¤o ¼¨Á µ¦³o Á¼o ¸É¥ªµµ®¦Î ´µÂ¦³Á£®°¥Î ʵΠºª«r Thiaridae .................................................................................................. 75 µ¦Â¨ª¦³ªµ¦®µÁ®n »¨............................................................ 76 ´ª°¥µn µ¦Ä¦³o ........................................................................................... 77 µ¦Á¡·¤ªµ¤¦É ¼oĵªµ¤¦¼o.............................................................................. 81 µ¦°¦³ ..............................................................................................