Brotia Costula 12

Total Page:16

File Type:pdf, Size:1020Kb

Brotia Costula 12 ¦³o¼Á¸É¥ªµ­Îµ®¦´ÎµÂ·®°¥Îʵºª«r Thiaridae Ã¥ µ­µª´µ Á¸¥¤¤µ¨´¥ µ¦oªoµ°­¦³· ¸ÊÁÈ ­nª®¹É °µ¦«¹¬µµ¤®¨­¦¦´ ¼ ·µª¥µ«µ­¦¤®µ· ´· ­µ µªµÁÃ襷 ­µ¦­Á«¸ £µªµ°¤¡· ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸ µ¦«¹¬µ 2553 ¨· ­··Í °´ ·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¦³o¼Á¸É¥ªµ­Îµ®¦´ÎµÂ·®°¥Îʵºª«r Thiaridae Ã¥ µ­µª´µ Á¸¥¤¤µ¨´¥ µ¦oªoµ°­¦³· ¸ÊÁÈ ­nª®¹É °µ¦«¹¬µµ¤®¨­¦¦´ ¼ ·µª¥µ«µ­¦¤®µ· ´· ­µ µªµÁÃ襷 ­µ¦­Á«¸ £µªµ°¤¡· ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸ µ¦«¹¬µ 2553 ¨· ­··Í °´ ·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ A WEB - BASED EXPERT SYSTEM FOR IDENTIFICATION OF FRESHWATER SNAILS FAMILY THIARIDAE By Chanunya Neammalai An Independent Study Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Computing Graduate School SILPAKORN UNIVERSITY 2010 ´·ª·¥µ¨´¥ ¤®µª·¥µ¨¥«´ ·¨µ¦ °»¤´·Ä®oµ¦ªo µ°o ·­¦³Á¦ºÉ° “¦³ ¼oÁ¸É¥ªµ­µ®¦Î ´µÂÎ ·®°¥ÊµÎ ºª« r Thiaridae” Á­°Ã¥ µ­µªµ´ Á¸¥¤¤µ¨´¥ ÁÈ­ª®n ¹É °µ¦«¹¬µµ¤®¨´­¼¦¦·µª·¥µ«µ­¦¤®µ´ · ­µ µª·µÁÃ襸 ­µ¦­Á« ……........................................................... (¼oª¥«µ­¦µµ¦¥n r ¦.µÄ µ¦«ª«´ )r ¸´·ª·¥µ¨´¥ ª´¸É..........Áº°.................... ¡.«........... °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·­¦³ °µµ¦¥ r ¦.­»¸¥r ¡¬r¡··£·Ã ³¦¦¤µ¦¦ª­°µ¦ªo µ°o ·­¦³ .................................................... ¦³µ¦¦¤µ¦ (¦°«µ­¦µµ¦¥ r ¦.´µ °Á¡n «¦È ¸) ............/......................../.............. .................................................... ¦¦¤µ¦ (°µµ¦¥ r ¦.µ ¦³·¬ª«)r ............/......................../.............. .................................................... ¦¦¤µ¦ (°µµ¦¥ r ¦.­»¸¥r ¡¬r¡··£·Ã) ............/......................../.............. 49309310 : ­µ µª·µÁÃ襭µ¦­Á«¸ ε­µÎ ´ : ¦³Á¼o ¸É¥ªµ/µ¦¨·/®°¥ª« r Thiaridae µ´ Á¸¥¤¤µ¨´¥ : ¦³Á¼o ¸É¥ªµ­µ®¦Î ´µÂÎ ·®°¥ÊµÎ ºª« r Thiaridae. °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·­¦³ : °.¦.­»¸¥r ¡¬r¡··£·Ã. 111 ®oµ. µª·´¥Ê¸ÎµÁ­°¦³Á¼o ¸É¥ªµ¸ÉεŦ³¥» Är µo ´ µo ¸ªª·¥µ Ã¥¡µ´ ¦³Á¼o ¸É¥ªµ­µ®Î ¦´µÂ¦³Á£Î ®°¥ÊµÎ ºª« r Thiaridae (Freshwater Snails Family Thiaridae) ¦³Á¼o ¸É¥ªµ¸É¼¡µ ´ ʹʸ­µ¤µ¦µÂ¦³Á£®°¥Î ʵΠºª« r Thiaridae Å o 17 · ¼oÁ¸É¥ªµ­´ ª·¥µµ®°¥ÊµÎ ºª« r Thiaridae ­µ¤µ¦Á¡É·¤£µ¡®°¥¸Éo¡Ä®¤Â¨³n Ä­ªµ¤¦n¼oÄ®¤Á n µÅĦ³o ¨³µªµ¤¦¼o³¼¦´¦»Ä®o­¤´ ¥Ã¥°´ ä´ ´· ¦³¤¸ ¦³ªµ¦®µo µ°Ã¥ÄÎ µ¦°o »¤µÂÁ·®oµ (Forward chaining) ¨³Äµ¦Âo ªµ¤¦¼oĵªµ¤¦¼o ¹É³°¥Ä¦n¼ ¼ IF-THEN-ELSE Rules ¦³¥­µ¤µ¦´ ¸É³ª¥Ä®n o¼oÄ®¦o º°­Ä¼o ªÇÉ´ ŸÉŤ¤n ¸ªµ¤¦¼oµµ®°¥o ʵΠº ª« r Thiaridae ¨°´ª·´¥­µ¤µ¦µÂ¦³Á£ °®°¥ÅÎ °¥µo n ¼°Â¨³¦ªÁ¦o Ȫ Ã¥Äo ¦¼£µ¡ °®°¥¸É¦³Â­ÅªÄ®o o ¦³Á¼o ¸É¥ªµ­µ®¦Î ´µÂÎ · °®°¥ª« r Thiaridae ¸Ê ¼¡µÄ¨´ ¬³Áª´ °¡¡¨È ·Á´ Á¡ºÉ°ªn ¥°µªÎ ¥ªµ¤­³ªÄµ¦ÄµÂ¨³­µ¤µ¦o ¼ εÅÄĵµ¦Á¦o ¸¥µ¦­°µ­µ µ¸ªª·¥µ®¦º°­µ µ°ºÉÇ ¸ÉÁ¥ª ¸É °o ¨ª·´¥ °µ¦¡µ¦³´ Á¼o ¸É¥ªµÂ­Ä®Á®o Ȫµµ¦n µÂ¦Î ¼£µ¡¦³Á£®°¥Êε ºª« r Thiaridae 17 ·¤¸µªµ¤Â¤¥n n ε 87.42% ¦³­··£µ¡ °¦³ªµªµ¤¡´ ¹¡°Ä ° ¼oÄ o ªµ¤¡¹¡°Ä °Á¼o ¸É¥ªµ­´ ª·¥µ°¥Ä¦³n¼ ´ ¸ oª¥µÁ¨ n ¸É¥ 4.18 ¨³ªµ¤¡¹¡°Ä ° ¼oÄo´ªÅ°¥É Ħ³n¼ ´ ¸ oª¥µÁ¨ n ¸É¥ 4.24 Ã¥£µ¡¦³¤¸¦³­··£µ¡µµ°¥Î nĦ³¼ ´ ¸ oª¥ µÁ¨n ¸É¥ 4.21 £µª·µ°¤¡ªÁ°¦· r ´·ª¥µ¨· ´¥ ¤®µª¥µ¨· ¥«´ ·¨µ¦ ¸µ¦«¹¬µ 2553 ¨µ¥¤º°ºÉ°«´ ¹¬µ........................................ ¨µ¥¤º°ºÉ°°µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·­¦³ ........................................ 49309310 : MAJOR : INFORMATION TECHNOLOGY KEY WORDS : EXPERT SYSTEM/PRODUCTION RULE/FAMILY THIARIDAE CHANUNYA NEAMMALAI : A WEB - BASED EXPERT SYSTEM FOR IDENTIFICATION OF FRESHWATER SNAILS FAMILY THIARIDAE. INDEPENDENT STUDY ADVISOR : SUNEE PONGPINIGPINYO, Ph.D. 111 pp. This thesis presents an Expert System applied to biology. The system is developed to identify freshwater snails of Family Thiaridae 17 species of including freshwater snails Family Thiaridae. The malacology expert can insert new photos and new knowledge of freshwater snails into the system. The knowledge base will be updated automatically. The inference process in this expert system uses the forward chaining approach and the knowledge is represented in form of production rules. The system is enhanced with photos that assist not only inexperienced users but also researchers in the precise and quick identification of freshwater snails. The system is developed as a web-based expert system so it is easy usage of users and it can be used in education of biology or other subject areas. The expert system developed as a result of this research shows that the accuracy of the images recognition of 17 species of freshwater snails Family Thiaridae is 87.42%. The system performance is measured by user satisfaction. The satisfaction of malacology experts is at good level with average 4.18 and the satisfaction of general users is at good level with average 4.24. Over all the system performance is at good level with average 4.21 Department of Computing Graduate School, Silpakorn University Academic Year 2010 Student's signature ........................................ Independent Study Advisor's signature ........................................ จ ··¦¦¤¦³µ« µ¦ªo µ°o ·­¦³´ ʸ­ÎµÁ¦ÈÅooª¥ªµ¤¦»µ °°µµ¦¥ r ¦.­»¸¥r ¡¬r¡··£·Ã °µµ¦¥r¸É¦¹¬µµ¦ªo µ°o ·­¦³ ¹ÉÅÄ®o oε¦¹¬µ ¦¹¬µ o°Ê¸Â³ ¨³ªµ¤ª¥Á®¨n º°Ä ®¨µ¥­·É®¨µ¥°¥µ¦³n¨´É »¨ªÅÅ n ooª¥¸ ¼oª·´¥ °¦µ °¡¦³»ÁÈ°¥µ­n ¼¤µ ¸É¸Ê °¦µ °¡¦³» ¦°«µ­¦µµ¦¥ r ¦. ªÁº° Ŧ¨µ« ¨³µ­µªª·ª·»µ Á¦´¬µ ¸ÉÄ®ªµ¤¦o »µÄ®oªµ¤¦¼o ¨³Á°Êʺ°Á¢º° °¤o ¼¨Á¥ª®°¥¸É ´ ʵΠºª« r Thiaridae °¦µ °¡¦³» ¦°«µ­¦µµ¦¥ r ¦.´µ °Á¡n È«¦¸ ¦³µ¦¦¤µ¦ ¦ª­°µ¦ªo µ°o ·­¦³ ¨³¦¦¤µ¦¼o¦»ª»· °µµ¦¥ r ¦.µ ¦³·¬ª« r ¸ÉÄ®o ªµ¤¦»µÄµ¦ÂÅ o°¡¦°µÇo n n °µª·´¥ °»Â¨³ °Ä ¡¸É Á¡ºÉ° » ¸É°¥µ¤Ånª¥ªµ¤®ªÄo n ¥ ¦ª¤¹¼o¤¸¡¦³» »µn¸É¤·ÅÁ°¥µ¤Åªo n o ¸É¸Ê ­»µ¥o ʸ ¦µ °¡¦³» ¡°n ¦³¤ª¨Â¨³Â¤n·£µ¡¦ Á¸¥¤¤µ¨´¥ »¡µ¦¸¼oÄ®o»­É· »°¥µn ´ ¼oª·´¥ ­µ¦´ ®oµ ¥°´ n £µ¬µÅ¥........................................................................................................................ ¥°£µ¬µ°´ n §¬´ ................................................................................................................... · ·¦¦¤¦³µ« ........................................................................................................................ ­µ¦µ¦µ´ ................................................................................................................................ ­µ¦£µ¡´ ................................................................................................................................... ¸É 1 ε........................................................................................................................... 1 ªµ¤ÁȤµÂ¨³ªµ¤­µÎ °´ ´®µ............................................................. 1 ª´»¦³­µ¦ªr ·´¥ .......................................................................................... 2 °Á µ¦ª·´¥.................................................................................................. 2 ´Ê°µ¦ª·´¥.................................................................................................. 3 ¦³Ã¥r¸Éµªµ³Ån o¦´................................................................................. 3 µÎ ·¥µ¤«¡´ Á¡µ³r ............................................................................................ 4 §¬¸¸ÉÁ¥ª ¸É °o 2 .......................................................................................................... 5 ªµ¤¦¼o¡ºÊµÁ¥ª¦³¸É ´ Á¼o ¸É¥ªµ............................................................. 5 ªµ¤¦¼oÁ¸É¥ªµ¦´ µÂ®°¥Î ʵΠºª« r Thiaridae ........................................ 31 3 µª·´¥¸ÉÁ¥ª ¸É °o ....................................................................................................... 40 Expert system for pests, diseases and weeds identification in olive crops ........ 40 A diagnostic expert system for honeybee pests................................................. 41 An expert system for tomato diseases................................................................ 43 EXSYS, an Expert System for Diagnosing Flowerbulb Diseases, Pets and Non-parasitic Disorders ........................................................................... 44 AMRAPALIKA : An expert system for the diagnosis of pets, diseases, and disorders in Indian mango........................................................................ 45 Expert System for integrated plant protection in pepper........................................ 46 Insect identification expert system for forest protection.................................... 47 ¸É ®oµ ¦³Á¼o ¸É¥ªµÄµ¦µÂ¨Î ª¥Å¤o o: ¦¸«¹¬µ¨ª¥Å¤o ­o ¨®ªµ¥ °Å¥» ... 48 ¦³Á¼o ¸É¥ªµ­µ®¦Î ´µÂ¡Î ´ »rŤÁ¤o º°Å¥.............................................. 48 ¦³Á¼o ¸É¥ªµµ¡§¬»¦¤ª·µ............................................................. 49 4 ª·¸µ¦µÁÎ ·µ......................................................................................................... 51 µ¦­°´ ªµ¤¦r ¼o (Knowledge acquisition).................................................... 51 µªµ¤¦¼o (Knowledge Based)......................................................................... 54 µ¦Âªµ¤¦¼o (Knowledge representation)..................................................... 56 ¦³ªµ¦®µÁ®»¨ (Inference Engine) ........................................................ 70 ­ªn·° n ´ ¼oĦ³o (User Interface) .......................................................... 72 5 ¨µ¦ª·´¥Â¨³°£·¦µ¥¨........................................................................................... 75 µ¦µ Î °¤o ¼¨Á µ¦³o Á¼o ¸É¥ªµ­µ®¦Î ´µÂ¦³Á£®°¥Î ʵΠºª«r Thiaridae .................................................................................................. 75 µ¦Â­¨­ª¦³ªµ¦®µÁ®n »¨............................................................ 76 ´ª°¥µn µ¦Ä¦³o ........................................................................................... 77 µ¦Á¡·¤ªµ¤¦É ¼oĵªµ¤¦¼o.............................................................................. 81 µ¦­°¦³ ..............................................................................................
Recommended publications
  • Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
    Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E.
    [Show full text]
  • New Record of Trichodina Unionis (Ciliophora, Trichodinidae) from Freshwater Gastropods in Bangkok, Thailand
    Parasite 26, 47 (2019) Ó P. Wiroonpan & W. Purivirojkul, published by EDP Sciences, 2019 https://doi.org/10.1051/parasite/2019047 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS New record of Trichodina unionis (Ciliophora, Trichodinidae) from freshwater gastropods in Bangkok, Thailand Pichit Wiroonpan, and Watchariya Purivirojkul* Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bang Khen Campus, Bangkok, 10900, Thailand Received 23 May 2019, Accepted 22 July 2019, Published online 30 July 2019 Abstract – Trichodinids, which are ciliate protists, are causative agents of an aquatic animal disease, trichodiniasis, especially among both captive and wild fish. This disease can adversely affect aquaculture and have economic impacts. The objectives of this study were to evaluate the prevalence and mean intensity of Trichodina unionis infection, describe qualitative and quantitative morphological characters, and perform a molecular phylogenetic analysis. The gastropod samples were randomly collected by hand-picking and a hand net. Trichodina unionis was collected by the crushing method under a stereomicroscope. Among all 4977 examined gastropods, 55 individuals of two gastropod species, Gyraulus siamensis and Physella acuta, were found to be infected by T. unionis, with overall prevalence and mean intensity of infection of 1.11% and 16.65, respectively. The characteristics of the denticles indicated T. unionis as having moderately wide blades and moderately curved blade margins, with distinctive bend angles near the distal end. The quantitative characters showed some variations, which could be due to food availability. Molecular phylogenetic analysis conducted with 18S rRNA provided a monophyletic tree of our specimens and previously identified T.
    [Show full text]
  • Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to Modern Tropical Rivers 41
    44 44 he A Rei Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 An International Journal of Palaeontology and Geobiology München 2004 Zitteliana Umschlag 44 1 18.01.2005, 10:04 Uhr Zitteliana An International Journal of Palaeontology and Geobiology Series A/Reihe A Mitteilungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie 44 CONTENTS/INHALT REINHOLD R. LEINFELDER & MICHAEL KRINGS Editorial 3 DIETRICH HERM Herbert HAGN † 5 KAMIL ZÁGORŠEK & ROBERT DARGA Eocene Bryozoa from the Eisenrichterstein beds, Hallthurm, Bavaria 17 THORSTEN KOWALKE Evolution of the Pachychilidae TROSCHEL, 1857 (Chaenogastropoda, Cerithioidea) – from the Tethys to modern tropical rivers 41 HERBERT W. SCHICK The stratigraphical signifi cance of Cymaceras guembeli for the boundary between Platynota Zone and Hypselocyclum Zone, and the correlation of the Swabian and Franconian Alb 51 GÜNTER SCHWEIGERT, RODNEY M. FELDMANN & MATTHIAS WULF Macroacaena franconica n. sp. (Crustaceae: Brachyura: Raninidae) from the Turonian of S Germany 61 JÜRGEN KRIWET & STEFANIE KLUG Late Jurassic selachians (Chondrichthyes, Elasmobranchii) from southern Germany: Re-evaluation on taxonomy and diversity 67 FELIX SCHLAGINTWEIT Calcareous green algae from the Santonian Hochmoos Formation of Gosau (Northern Calcareous Alps, Austria, Lower Gosau Group) 97 MICHAEL KRINGS & HELMUT MAYR Bassonia hakelensis (BASSON) nov. comb., a rare non-calcareous
    [Show full text]
  • Nominal Taxa of Freshwater Mollusca from Southeast Asia Described by Dr
    Ecologica Montenegrina 41: 73-83 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.41.11 https://zoobank.org/urn:lsid:zoobank.org:pub:2ED2B90D-4BF2-4384-ABE2-630F76A1AC54 Nominal taxa of freshwater Mollusca from Southeast Asia described by Dr. Nguyen N. Thach: A brief overview with new synonyms and fixation of a publication date IVAN N. BOLOTOV1,2, EKATERINA S. KONOPLEVA1,2,*, ILYA V. VIKHREV1,2, MIKHAIL Y. GOFAROV1,2, MANUEL LOPES-LIMA3,4,5, ARTHUR E. BOGAN6, ZAU LUNN7, NYEIN CHAN7, THAN WIN8, OLGA V. AKSENOVA1,2, ALENA A. TOMILOVA1, KITTI TANMUANGPAK9, SAKBOWORN TUMPEESUWAN10 & ALEXANDER V. KONDAKOV1,2 1N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Northern Dvina Emb. 23, 163000 Arkhangelsk, Russia. 2Northern Arctic Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia. 3CIBIO/InBIO – Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal. 4CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal. 5SSC/IUCN – Mollusc Specialist Group, Species Survival Commission, International Union for Conservation of Nature, c/o The David Attenborough Building, Pembroke Street, CB2 3QZ Cambridge, United Kingdom. 6North Carolina Museum of Natural Sciences, 11 West Jones St., Raleigh, NC 27601, United States of America 7Fauna & Flora International – Myanmar Programme, Yangon, Myanmar. 8 Department of Zoology, Dawei University, Dawei, Tanintharyi Region, Myanmar.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 103 Washington : 1954 No. 3325 THE RELATIONSHIPS OF OLD AND NEW WORLD MELANIANS By J. P. E. Morrison Recent anatomical observations on the reproductive systems of certain so-called "melanian" fresh-water snails and their marine rela- tives have clarified to a remarkable degree the supergeneric relation- ships of these fresh-water forms. The family of Melanians, in the broad sense, is a biological ab- surdity. We have the anomaly of one fresh-water "family" of snails derived from or at least structurally identical in peculiar animal characters to and ancestrally related to three separate and distinct marine famiHes. On the other hand, the biological picture has been previously misunderstood largely because of the concurrent and convergent evolution of the three fresh-water groups, Pleuroceridae, Melanopsidae, and Thiaridae, from ancestors common to the marine families Cerithiidae, Modulidae, and Planaxidae, respectively. The family Melanopsidae is definitely known living only in Europe. At present, the exact placement of the genus Zemelanopsis Uving in fresh waters of New Zealand is uncertain, since its reproductive characters are as yet unknown. In spite of obvious differences in shape, the shells of the marine genus Modulus possess at least a well- indicated columellar notch of the aperture, to corroborate the biologi- cal relationship indicated by the almost identical female egg-laying structure in the right side of the foot of Modulus and Melanopsis. 273553—54 1 357 358 PROCEEDINGS OF THE NATIONAL MUSEUM vol. los The family Pleuroceridae, fresh-water representative of the ancestral cerithiid stock, is now known to include species living in Africa, Asia, and the Americas.
    [Show full text]
  • Marsupial' Freshwater
    Zoosyst. Evol. 85 (2) 2009, 199–275 / DOI 10.1002/zoos.200900004 Diversity and disparity ‘down under’: Systematics, biogeography and reproductive modes of the ‘marsupial’ freshwater Thiaridae (Caenogastropoda, Cerithioidea) in Australia Matthias Glaubrecht*,1, Nora Brinkmann2 and Judith Pppe1 1 Museum fr Naturkunde Berlin, Department of Malacozoology, Invalidenstraße 43, 10115 Berlin, Germany 2 University of Copenhagen, Institute of Biology, Research Group for Comparative Zoology, Universitetsparken 15, 2100 Copenhagen, Denmark Abstract Received 11 May 2009 We systematically revise here the Australian taxa of the Thiaridae, a group of freshwater Accepted 15 June 2009 Cerithioidea with pantropical distribution and “marsupial” (i.e. viviparous) reproductive Published 24 September 2009 modes. On this long isolated continent, the naming of several monotypic genera and a plethora of species have clouded both the phylogenetical and biogeographical relation- ships with other thiarids, in particular in Southeast Asia, thus hampering insight into the evolution of Australian taxa and their natural history. Based on own collections during five expeditions to various regions in Australia between 2002 and 2007, the study of rele- vant type material and the comparison with (mostly shell) material from major Australian museum collections, we describe and document here the morphology (of adults and juve- niles) and radulae of all relevant thiarid taxa, discussing the taxonomical implications and nomenclatural consequences. Presenting comprehensive compilations of the occurrences for all Australian thiarid species, we document their geographical distribution (based on over 900 records) with references ranging from continent-wide to drainage-based pat- terns. We morphologically identify a total of eleven distinct species (also corroborated as distinct clades by molecular genetic data, to be reported elsewhere), of which six species are endemic to Australia, viz.
    [Show full text]
  • Caenogastropoda: Cerithioidea)
    Exploring the unknown: On the diversity of pachychilid freshwater gastropods in Vietnam (Caenogastropoda: Cerithioidea) ! "#$%&!'()*+#,-!./!0$%!123-!4/!1)$%)!4$53! ! ,!6!7/##+89/%:5%;!$2<)/#=!>28+2?!@A#!B$<2#&2%:+-!42?C/*:<DE%5F+#85<G<-!H%F$*5:+%8<#=!IJ-! ,K,,L!M+#*5%-!N+#?$%O=!72##+%<!$::#+88P!Q28<#$*5$%!>28+2?-!R!7/**+;+!S<#++<-!SO:%+O!BST! 3K,K-!Q28<#$*5$=!U?$5*P!@#$%&=&/+)*+#V$28<?28=;/F=$2! ! 3!6!05+<%$?+8+!QW$:+?O!/@!SW5+%W+!$%:!1+W)%/*/;O-!H%8<5<2<+!/@!UW/*/;O!$%:!M5/D X+8/2#W+8-!,Y!4/$%;!Z2/W!05+<-!7$2!N5$O-!4$%/5-!05+<%$?=!! ! X2%%5%;!)+$:P!! 05+<%$?+8+![$W)OW)5*5:$+! '+O\/#:8P! Brotia-!Sulcospira-!Adamietta-!<$]/%/?O-!8O8<+?$<5W8-!9)O*/;+%O-!?/#9)/*/;O-!?5:;2<!! !! ! Abstract Q!#+F585/%!/@!05+<%$?+8+!@#+8)\$<+#!;$8<#/9/:8!/@!<)+!@$?5*O![$W)OW)5*5:$+!58!9#+8+%<+:! C$8+:!/%!<)+!$%$*O858!/@!?/#9)/*/;5W$*!W)$#$W<+#58<5W8!$%:!9$#<5$*!8+^2+%W+8!/@!<)+! ?5</W)/%:#5$*!;+%+8!/@!,RS!#XBQ!_,RS`!$%:!WO</W)#/?+!W!/]5:$8+!82C2%5<!H!_7aH`=!T+!@/2%:! <)$<!5%!05+<%$?!<\/!9$W)OW)5*5:!;+%+#$!/WW2#-!Brotia!$%:!Sulcospira=!a@!<)+!+5;)<!</!@5@<++%! 89+W5+8!#+9/#<+:!CO!+$#*5+#!$2<)/#8-!\+!W$%!/%*O!W/%@5#?!<)+!9#+8+%W+!/@!<\/!89+W5+8-! Sulcospira tonkiniana!$%:!S. tourannensis=!Q**!@2#<)+#!<$]/%/?5W!%$?+8!<)$<!\+#+!9#+F5/28*O! $99*5+:!@/#!05+<%$?+8+!9$W)OW)5*5:8!$#+!W/%85:+#+:!+5<)+#!$8!b2%5/#!8O%/%O?8!/@!<)+8+!<\/! 89+W5+8!/#!+##/%+/28!#+@+#+%W+8!</!89+W5+8!@#/?!/<)+#!#+;5/%8!/@!S/2<)+$8<!$%:!S/2<)!Q85$=! Q::5<5/%$**O-!\+!:+8W#5C+!<\/!%+\!89+W5+8!/@!Brotia!$%:!@/2#!%+\!89+W5+8!/@!Sulcospira $%:! #+9/#<!$%/<)+# 2%:+8W#5C+:!89+W5+8!\5<)!2%W+#<$5%!$@@5%5<5+8=![$<<+#%8!/@!?/#9)/*/;5W$*!$%:!
    [Show full text]
  • Survey of Brackish-Water Snails in Eastern Thailand
    SURVEY OF BRACKISH-WATER SNAILS IN EASTERN THAILAND Pusadee Sri-aroon1, Chantima Lohachit1 and Masakazu Harada2 1Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Department of International Medical Zoology, Kagawa Medical University, Kagawa, Japan Abstract. Various brackish-water snails in Thailand are known or suspected intermediate hosts of trematode diseases of human and veterinary importance. Surveys of brackish-water snails were performed in six provinces of eastern Thailand: Samut Prakan, Chachoengsao, Chon Buri, Rayong, Chanthaburi, and Trat. Thirty-five species of brackish-water snails were present in the studied provinces. They belonged to nine families: Neritidae, Potamididae, Muricidae, Littorinidae, Iravadiidae, Thiaridae, Stenothyridae, Assimineidae, and Auriculidae. Natural infection of brackish-water snails with trematodes was revealed through shedding and crushing methods. Several types of cercariae were found, with or without eye-spots, tail fin-fold, collar spines, and stylet. INTRODUCTION knowledge gap on the medical and veterinary importance of the brackish-water snails of Thailand, The literature concerning studies of brackish-water and, 2) to investigate the distribution of brackish-water molluscs living in the mangrove areas and estuaries of snails currently inhabiting estuaries and mangrove Thailand is sparse. Brandt (1974) studied the mollusks forests in the eastern part of Thailand. of Thailand between April 1963 and February 1971. In his investigation, about the last third of the MATERIALS AND METHODS unidentified fresh- and brackish-water snail species was described. Systemic arrangement, including Twenty-six of 44 stations along the eastern coast identification to genus and species of snails, both wet of Thailand were visited for brackish-water snail and dry specimens of Brandt’s collection, and of the collection during the period July 17-20, 2003.
    [Show full text]
  • Introduction to Mollusca and the Class Gastropoda
    Author's personal copy Chapter 18 Introduction to Mollusca and the Class Gastropoda Mark Pyron Department of Biology, Ball State University, Muncie, IN, USA Kenneth M. Brown Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA Chapter Outline Introduction to Freshwater Members of the Phylum Snail Diets 399 Mollusca 383 Effects of Snail Feeding 401 Diversity 383 Dispersal 402 General Systematics and Phylogenetic Relationships Population Regulation 402 of Mollusca 384 Food Quality 402 Mollusc Anatomy and Physiology 384 Parasitism 402 Shell Morphology 384 Production Ecology 403 General Soft Anatomy 385 Ecological Determinants of Distribution and Digestive System 386 Assemblage Structure 404 Respiratory and Circulatory Systems 387 Watershed Connections and Chemical Composition 404 Excretory and Neural Systems 387 Biogeographic Factors 404 Environmental Physiology 388 Flow and Hydroperiod 405 Reproductive System and Larval Development 388 Predation 405 Freshwater Members of the Class Gastropoda 388 Competition 405 General Systematics and Phylogenetic Relationships 389 Snail Response to Predators 405 Recent Systematic Studies 391 Flexibility in Shell Architecture 408 Evolutionary Pathways 392 Conservation Ecology 408 Distribution and Diversity 392 Ecology of Pleuroceridae 409 Caenogastropods 393 Ecology of Hydrobiidae 410 Pulmonates 396 Conservation and Propagation 410 Reproduction and Life History 397 Invasive Species 411 Caenogastropoda 398 Collecting, Culturing, and Specimen Preparation 412 Pulmonata 398 Collecting 412 General Ecology and Behavior 399 Culturing 413 Habitat and Food Selection and Effects on Producers 399 Specimen Preparation and Identification 413 Habitat Choice 399 References 413 INTRODUCTION TO FRESHWATER shell. The phylum Mollusca has about 100,000 described MEMBERS OF THE PHYLUM MOLLUSCA species and potentially 100,000 species yet to be described (Strong et al., 2008).
    [Show full text]
  • Cerithioidea, Thiaridae) with Perspectives on a Gondwanian Origin
    Molecular approaches to the assessment of biodiversity in limnic gastropods (Cerithioidea, Thiaridae) with perspectives on a Gondwanian origin DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakult¨at der Humboldt-Universit¨at zu Berlin von Dipl. Biol. France Gimnich Pr¨asident der Humboldt-Universit¨at zu Berlin: Prof. Dr. Jan-Hendrik Olbertz Dekan der Lebenswissenschaftlichen Fakult¨at: Prof. Dr. Richard Lucius Gutachter/innen: Prof. Dr. Hannelore Hoch Prof. Dr. Matthias Glaubrecht Prof. Dr. Stefan Richter Tag der m¨undlichen Pr¨ufung: 13.07.2015 Meinen Eltern Selbst¨andigkeitserkl¨arung Hiermit versichere ich an Eides statt, dass die vorgelegte Arbeit, abgesehen von den ausdr¨ucklich bezeichneten Hilfsmitteln, pers¨onlich, selbstst¨andig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Daten und Konzepte, die aus anderen Quellen direkt oder indirektubernommen ¨ wurden, sind unter Angaben von Quellen kenntlich gemacht. Diese Arbeit hat in dieser oder ¨ahnlichen Form keiner anderen Pr¨ufungsbeh¨orde vorgelegen und ich habe keine fr¨uheren Promotionsversuche unternom- men. F¨ur die Erstellung der vorliegenden Arbeit wurde keine fremde Hilfe, insbesondere keine entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten in Anspruch genom- men. Contents I Contents SUMMARY 1 ZUSAMMENFASSUNG 3 1 General Introduction 5 1.1Biogeography.................................. 5 1.2Studyspecies.................................
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-205 Poster Presentations…………………………………………………………………………………207-270 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Research Article Cercarial Infections of Freshwater Snail Genus Brotia In
    Research Article Cercarial Infections of Freshwater Snail Genus Brotia in Thailand Pinanrak Pratumsrikajorn1, Suluck Namchote1, Dusit Boonmekam1, Tunyarut Koonchornboon2, Matthias Glaubrecht3, and Duangduen Krailas1* 1Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand 2 Department of Anatomy, Pramongkhutklao College of Medicine, Bangkok 10400, Thailand 3Center of Natural History, University of Hamburg, Martin/Luther-King-Platz 3, Hamburg 20146, Germany *Corresponding author. Email address: [email protected] Received November 3, 2016; Accepted July 9, 2017 Abstract Freshwater snail genus Brotia is susceptible to trematode infections. In this study, Brotia spp. were collected from 61 localities in Thailand during 2004-2009 and 2013-2015 (to collect those in all localities distributed in Thailand, they have to be collected in two time frames). The samples were collected by hand picking and scooping methods based on counts per unit of time. A total of 13,394 snails were collected and identified into 16 species. They were B. armata, B. binodosa, B. citrina, B. costula, B. dautzenbergiana, B. henriettae, B. insolita, B. manningi, B. microsculpta, B. pagodula, B. paludiformis, B. peninsularis, B. pseudosulcospira, B. solemiana, B. subgloriosa, and B. wykoffi. Cercariae were investigated using shedding and crushing methods. Three species of Brotia had found the cercarial infections, they were B. costula, B. dautzenbergiana, and B. wykoffi. The overall infection rate was 0.20% (27/13,394). The cercariae were categorized into two types and three species. The first type was Xiphidiocercariae with one species,Loxogenoides bicolor Kaw, 1945. It was found in those three species of infected snails. The infection rate was 0.18% (24/13,394).
    [Show full text]