Biological Membranes Life at the Edge

Total Page:16

File Type:pdf, Size:1020Kb

Biological Membranes Life at the Edge Biological membranes Life at the Edge The plasma membrane Is the boundary that separates the living cell from its nonliving surroundings About 8 nm thick Controls traffic into and out of the cell The plasma membrane exhibits selective permeability It allows some substances to cross it more easily than others Figure 7.1 Transport Across Membranes: Overcoming the Permeability Barrier •Overcoming the permeability barrier of cell membranes is crucial to proper functioning of the cell. •Specific molecules and ions need to be selectively moved into and out of the cell or organelle . •Membranes are selectively permeable. Definitions •Solution – mixture of dissolved molecules in a liquid •Solute – the substance that is dissolved •Solvent – the liquid Ion Concentrations •The maintenance of solutes on both sides of the membrane is critical to the cell –Helps to keep the cell from rupturing •Concentration of ions on either side varies widely –Na+ and Cl- are higher outside the cell –K+ is higher inside the cell –Must balance the number of positive and negative charges, both inside and outside cell •Ions and hydrophilic molecules cannot easily pass trough the hydrophobic membrane •Small and hydrophobic molecules can •Must know the list to the left Cells and Transport Processes Cells and cellular compartments - accumulate a variety of substances concentrations -very different from those of the surroundings substances that move across membranes - dissolved gases, ions, and small organic molecules; solutes Transport is central to cell function A central aspect of cell function - selective transport movement of ions or small organic molecules (metabolites) Cellular membranes are fluid mosaics of lipids and proteins Phospholipids Are the most abundant lipid in the plasma membrane Are amphipathic, containing both hydrophobic and hydrophilic regions For those who forgot… HYDROPHOBIC SUBSTANCE cannot be dissolved in water because they do not have affinity to water. Example is oil HYDROPHILIC SUBSTANCE can be dissolved in water because they have affinity to it. How are phospholipids and proteins arranged in the membranes of the cell? • The fluid mosaic model of membrane structure – States that a membrane is a fluid structure with a “mosaic” of various proteins embedded in it – Or attached to a double layer of phospholipids Membrane Models: Scientific Inquiry Membranes have been chemically analyzed And found to be composed of proteins and lipids Scientists studying the plasma membrane Reasoned that it must be a phospholipid bilayer This bilayer of molecules exists as stable boundary between two aqueous compartments WATER Hydrophilic head Hydrophobic tail WATER The Davson-Danielli sandwich model of membrane structure Stated that the membrane was made up of a phospholipid bilayer sandwiched between two protein layers Was supported by electron microscope pictures of membranes However, there were 2 problems 1. generalization that all membranes of the cell are identical was challenged Plasma membrane is 7/8 nm thick and has three layered structure, and inner mitochondrial membrane is 6 nm thick and looks like a row of beads 2. placement of the proteins since membrane proteins are not very soluble in water Membrane proteins have hydrophobic and hydrophilic regions. If placed on the surface, hydrophobic parts would be in an aqueous environment… In 1972, Singer and Nicolson Proposed that membrane proteins are dispersed and individually inserted into the phospholipid bilayer Only their hydrophilic regions protrude far enough from the bilayer to be exposed to water According to this, the membrane is a mosaic of protein molecules bobbing in a fluid bilayer of phospholipids Hydrophilic region of protein Phospholipid bilayer Hydrophobic region of protein The Fluidity of Membranes Membranes are not static sheets of molecules ! Held together by hydrophobic interactions which are weaker than covalent bonds Most of the lipids and some of the proteins can drift about laterally That is in the plane of the membrane Movement is rapid However, proteins are larger than lipids and they move slower The Fluidity of Membranes Membrane remains fluid as temperature decreases Phospholipids settle into closely packed arrangement and the membrane solidifies The solidification temperature depends on the types of lipids it is made of The membrane remains fluid at lower temperatures if it is rich in phospholipids with unsaturated hydrocarbon tails Those hydrocarbons have kinks in the tails where the double bonds are located so they cannot pack closely as saturated hydrocarbons The type of hydrocarbon tails in phospholipids Affects the fluidity of the plasma membrane Fluid Viscous Unsaturated hydrocarbon Saturated hydro- tails with kinks Carbon tails (b) Membrane fluidity The Fluidity of Membranes Phospholipids in the plasma membrane Can move within the bilayer Lateral movement Flip-flop (~107 times per second) (~ once per month) (a) Movement of phospholipids Lateral movement Within the same membrane surface Fast process Flip-flop Or transverse diffusion From one membrane surface to another Slow process The Fluidity of Membranes The membranes must be fluid to work properly Fluid as salad oil When solid it changes its permeability and enzymatic proteins in the membrane become inactive Solutes Cross Membranes Simple Diffusion, Facilitated Diffusion, and Active Transport •Three quite different mechanisms are involved in moving solutes across membranes •A few molecules cross membranes by simple diffusion, the direct unaided movement dictated by differences in concentration of the solute on the two sides of the membrane •However, most solutes cannot cross the membrane this way The Role of Membrane Carbohydrates in Cell-Cell Recognition Cell-cell recognition Is a cell’s ability to distinguish one type of neighboring cell from another Important for organisms functioning Basis for the rejection of foreign cells by immune system The way cells recognize other cells is by binding to surface molecules Usually carbohydrates Membrane carbohydrates Interact with the surface molecules of other cells, facilitating cell-cell recognition Usually short Some are covalently bonded to lipids forming molecules called glycolipids Most of them are bonded to proteins forming glycoproteins Synthesis and Sidedness of Membranes Membranes have distinct inside and outside faces This affects the movement of proteins synthesized in the endomembrane system Membrane proteins and lipids 1 •Synthesis of membrane proteins and Transmembrane glycoproteins lipids in the ER. Carbohydrates are ER added to the proteins making them Secretory protein glycoproteins Glycolipid •Inside Golgi they undergo Golgi 2 carbohydrate modifications becoming apparatus glycolipids Vesicle •Proteins are transported in vesicles to the plasma membrane •The vesicles fuse with the membrane 3 releasing secretory proteins form the Plasma membrane: cell Cytoplasmic face 4 Extracellular face Transmembrane Secreted glycoprotein protein Membrane glycolipid Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane A steady traffic of small molecules and ions moves across the membrane in both directions Sugars, amino acids and other nutrients enter the cell while waste products leave the cell The cell takes in oxygen for cellular respiration and expels CO2 It also regulates concentration of inorganic ions The Permeability of the Lipid Bilayer Hydrophobic molecules Are lipid soluble and can pass through the membrane rapidly Examples are oxygen, hydrocarbons and CO2 Polar molecules Do not cross the membrane rapidly Examples are glucose and other sugars, water Charged atom or molecule and its surrounding shell of water penetrate the membrane even more difficult Transport Proteins Transport proteins Allow passage of hydrophilic substances across the membrane Some of them act as channel proteins where they have hydrophilic channel that certain molecules use as a tunnel Others act as carrier proteins which hold onto their passengers and change shape in a way that shuttles them across the membrane In both cases the transport protein is specific for the substance it translocates Active transport In other cases, transport proteins move solutes against the concentration gradient; this is called active transport. Active transport requires energy such as that released by the hydrolysis of ATP or by the simultaneous transport of another solute down an energy gradient. Concentration gradient or Electrochemical Potential The movement of a molecule that has no net charge is determined by its concentration gradient Simple or facilitated diffusion involve exergonic movement “down” the concentration gradient (negative ΔG) Active transport involves endergonic movement “up” the concentration gradient (positive ΔG) The electrochemical potential The movement of an ion is determined by its electrochemical potential the combined effect of its concentration gradient and the charge gradient across the membrane The active transport of ions across a membrane creates a charge gradient or membrane potential (Vm) Active transport of ions Most cells have an excess of negatively charged solutes inside the cell This charge difference favors the inward movement of cations such as Na+ and outward movement of anions such as Cl– In all organisms, active transport of ions across the plasma
Recommended publications
  • Biological Membranes and Transport Membranes Define the External
    Biological Membranes and Transport Membranes define the external boundaries of cells and regulate the molecular traffic across that boundary; in eukaryotic cells, they divide the internal space into discrete compartments to segregate processes and components. Membranes are flexible, self-sealing, and selectively permeable to polar solutes. Their flexibility permits the shape changes that accompany cell growth and movement (such as amoeboid movement). With their ability to break and reseal, two membranes can fuse, as in exocytosis, or a single membrane-enclosed compartment can undergo fission to yield two sealed compartments, as in endocytosis or cell division, without creating gross leaks through cellular surfaces. Because membranes are selectively permeable, they retain certain compounds and ions within cells and within specific cellular compartments, while excluding others. Membranes are not merely passive barriers. Membranes consist of just two layers of molecules and are therefore very thin; they are essentially two-dimensional. Because intermolecular collisions are far more probable in this two-dimensional space than in three-dimensional space, the efficiency of enzyme-catalyzed processes organized within membranes is vastly increased. The Molecular Constituents of Membranes Molecular components of membranes include proteins and polar lipids, which account for almost all the mass of biological membranes, and carbohydrate present as part of glycoproteins and glycolipids. Each type of membrane has characteristic lipids and proteins. The relative proportions of protein and lipid vary with the type of membrane, reflecting the diversity of biological roles (as shown in table 12-1, see below). For example, plasma membranes of bacteria and the membranes of mitochondria and chloroplasts, in which many enzyme-catalyzed processes take place, contain more protein than lipid.
    [Show full text]
  • The Role of Cell Membrane Information Reception, Processing, and Communication in the Structure and Function of Multicellular Tissue
    International Journal of Molecular Sciences Review The Role of Cell Membrane Information Reception, Processing, and Communication in the Structure and Function of Multicellular Tissue Robert A. Gatenby Departments of Radiology and Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; robert.gatenby@moffitt.org Received: 9 July 2019; Accepted: 18 July 2019; Published: 24 July 2019 Abstract: Investigations of information dynamics in eukaryotic cells focus almost exclusively on heritable information in the genome. Gene networks are modeled as “central processors” that receive, analyze, and respond to intracellular and extracellular signals with the nucleus described as a cell’s control center. Here, we present a model in which cellular information is a distributed system that includes non-genomic information processing in the cell membrane that may quantitatively exceed that of the genome. Within this model, the nucleus largely acts a source of macromolecules and processes information needed to synchronize their production with temporal variations in demand. However, the nucleus cannot produce microsecond responses to acute, life-threatening perturbations and cannot spatially resolve incoming signals or direct macromolecules to the cellular regions where they are needed. In contrast, the cell membrane, as the interface with its environment, can rapidly detect, process, and respond to external threats and opportunities through the large amounts of potential information encoded within the transmembrane ion gradient. Our model proposes environmental information is detected by specialized protein gates within ion-specific transmembrane channels. When the gate receives a specific environmental signal, the ion channel opens and the received information is communicated into the cell via flow of a specific ion species (i.e., K+, Na+, 2+ 2+ Cl−, Ca , Mg ) along electrochemical gradients.
    [Show full text]
  • AQP3 and AQP5—Potential Regulators of Redox Status in Breast Cancer
    molecules Review AQP3 and AQP5—Potential Regulators of Redox Status in Breast Cancer Lidija Milkovi´c and Ana Cipakˇ Gašparovi´c* Division of Molecular Medicine, Ruder¯ Boškovi´cInstitute, HR-10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-1-457-1212 Abstract: Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome–remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies. Keywords: AQP3; AQP5; oxidative stress Citation: Milkovi´c,L.; Cipakˇ 1. Introduction Gašparovi´c,A. AQP3 and Despite the progress in research and treatment procedures, cancer still remains the AQP5—Potential Regulators of Redox leading cause of death. Today, cancer is targeted via different approaches which is deter- Status in Breast Cancer. Molecules mined by diagnosis, tumour marker expression, and specific mutations.
    [Show full text]
  • Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles
    cells Article Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles Clotilde Garrido y, Oliver D. Caspari y , Yves Choquet , Francis-André Wollman and Ingrid Lafontaine * UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France; [email protected] (C.G.); [email protected] (O.D.C.); [email protected] (Y.C.); [email protected] (F.-A.W.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes. Keywords: Chlamydomonas; targeting peptides; antimicrobial peptides; primary endosymbiosis; import into organelles; chloroplast; mitochondrion 1.
    [Show full text]
  • Regulation of Apoptosis-Associated Lysosomal Membrane Permeabilization
    Linköping University Post Print Regulation of apoptosis-associated lysosomal membrane permeabilization Ann-Charlotte Johansson, Hanna Appelqvist, Cathrine Nilsson, Katarina Kågedal, Karin Roberg and Karin Öllinger N.B.: When citing this work, cite the original article. The original publication is available at www.springerlink.com: Ann-Charlotte Johansson, Hanna Appelqvist, Cathrine Nilsson, Katarina Kågedal, Karin Roberg and Karin Öllinger, Regulation of apoptosis-associated lysosomal membrane permeabilization, 2010, APOPTOSIS, (15), 5, 527-540. http://dx.doi.org/10.1007/s10495-009-0452-5 Copyright: Springer Science Business Media http://www.springerlink.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-55061 REGULATION OF APOPTOSIS-ASSOCIATED LYSOSOMAL MEMBRANE PERMEABILIZATION Ann-CharlotteJohansson1, Hanna Appelqvist2, Cathrine Nilsson1,2, Katarina Kågedal2, Karin Roberg1,3, Karin Öllinger2 1 Division of Otorhinolaryngology, Linköping University Hospital, Linköping, Sweden 2 Division of Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden 3 Division of Otorhinolaryngology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden Correspondence: Ann-Charlotte Johansson, Division of Otorhinolaryngology, Linköping University Hospital, SE-581 85 Linköping, Sweden Phone: +46-13-221525, Fax: +46-13-221529, E-mail: [email protected] ABSTRACT Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal.
    [Show full text]
  • Structure, Function, and Localization of Aquaporins: Their Possible Implications on Gamete Cryopreservation
    Review Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation A.D. Sales1, C.H. Lobo2, A.A. Carvalho1, A.A. Moura2 and A.P.R. Rodrigues1 1Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais, Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará, Fortaleza, CE, Brasil 2Grupo de Pesquisa em Biologia da Reprodução, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, CE, Brasil Corresponding author: A.P.R. Rodrigues E-mail: [email protected] Genet. Mol. Res. 12 (4): 6718-6732 (2013) Received April 10, 2013 Accepted October 15, 2013 Published December 13, 2013 DOI http://dx.doi.org/10.4238/2013.December.13.5 ABSTRACT. The discovery of water channels (aquaporins, AQPs) was a landmark event for the clarification of water transport through the plasma membrane. AQPs belong to a family of intrinsic membrane proteins that act as selective channels for water and for solutes such as glycerol and urea. AQPs were found in different tissues and organs, including male and female reproductive systems. In the swine female reproductive system, the AQPs were localized in the uterus, oviduct, and ovary, as well as in the granulosa cells from primordial follicles. Knowing the involvement of AQPs with the male and female germ cells, as well as their acknowledged role in transporting water through the plasma membrane, the research of these proteins in cryopreservation processes becomes essential. Thus, this review aims to describe the structure and function of AQPs in membranes, highlighting their role Genetics and Molecular Research 12 (4): 6718-6732 (2013) ©FUNPEC-RP www.funpecrp.com.br Overview and role of aquaporins on gamete cryopreservation 6719 in the reproductive system (male and female).
    [Show full text]
  • Modeling Structures and Transport Phenomena of Transmembrane Channels and Transporters
    Modeling Structures and Transport Phenomena of Transmembrane Channels and Transporters Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Natural Sciences (Biophysics) by Siladitya Padhi 201166647 [email protected] Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology, Hyderabad (Deemed to be University) Hyderabad 500032, India October 2016 © Siladitya Padhi 2016 All rights reserved ii iii iv v vi Acknowledgments I must start by thanking my supervisor, Dr. U. Deva Priyakumar, for giving me an opportunity to work with him, and for making all this possible. Having had a similar approach towards work, I was pretty comfortable working with him. He has always been active and cooperative, and I always had the freedom to walk into his office any time and start discussing business. He has given me a lot of opportunity, the most noteworthy one being my visit to Germany for a 10-day workshop at Ruprecht-Karls-Universität Heidelberg, followed by a two-month stay at Westfälische Wilhelms-Universität Münster. I also had a lot to learn working as a teaching assistant with him. There has been a lot to gain from faculty members at the Center for Computational Natural Sciences and Bioinformatics (CCNSB) at IIIT. Dr. Prabhakar Bhimalapuram has constantly given suggestions, right from my initial days, when he explained the basics of enhanced sampling methods to me, to my pre-PhD defense, during which he gave valuable and critical inputs. I have benefited immensely from the well-structured Statistical Mechanics course offered by Dr.
    [Show full text]
  • (KCNK3) Channels in the Lung: from Cell Biology to Clinical Implications
    REVIEW PULMONARY CIRCULATION AND PHYSIOPATHOLOGY TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications Andrea Olschewski1,2, Emma L. Veale3, Bence M. Nagy2, Chandran Nagaraj1,2, Grazyna Kwapiszewska1,2, Fabrice Antigny4,5,6, Mélanie Lambert4,5,6, Marc Humbert 4,5,6, Gábor Czirják7, Péter Enyedi7 and Alistair Mathie3 Affiliations: 1Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria. 2Institute of Physiology, Medical University of Graz, Graz, Austria. 3Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, UK. 4Univ. Paris-Sud, Faculté de Médecine, Kremlin-Bicêtre, France. 5AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin- Bicêtre, France. 6UMRS 999, INSERM and Univ. Paris–Sud, Laboratoire d’Excellence (LabEx) en Recherche sur le Médicament et l’Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, Le Plessis Robinson, France. 7Dept of Physiology, Semmelweis University, Budapest, Hungary. Correspondence: Andrea Olschewski, Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz-8010, Austria. E-mail: [email protected] @ERSpublications Current advancements of TASK-1/KCNK3 channels in the human pulmonary circulation in health and disease http://ow.ly/xgJo30fNZRN Cite this article as: Olschewski A, Veale EL, Nagy BM, et al. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 2017; 50: 1700754 [https://doi.org/10.1183/ 13993003.00754-2017]. ABSTRACT TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels.
    [Show full text]
  • Luminal Calcium Regulates Membrane Fusion in the Early Secretory Pathway
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2010 Luminal calcium regulates membrane fusion in the early secretory pathway Marvin Bentley The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bentley, Marvin, "Luminal calcium regulates membrane fusion in the early secretory pathway" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 636. https://scholarworks.umt.edu/etd/636 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. LUMINAL CALCIUM REGULATES MEMBRANE TRAFFICKING IN THE EARLY SECRETORY PATHWAY By MARVIN DOMINIC JAMES BENTLEY B.A., Ouachita Baptist University, AR, 2004 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Integrative Microbiology and Biochemistry, Cellular and Molecular Biology The University of Montana Missoula, MT December 2010 Approved by: Perry Brown, Associate Provost for Graduate Education Graduate School Jesse Hay, Chair Division of Biological Sciences Scott Wetzel Division of Biological Sciences Mark Grimes Division of Biological Sciences Scott Samuels Division of Biological Sciences Darrell Jackson Department of Biomedical and Pharmaceutical Sciences ii Bentley, Marvin, Ph.D., Fall 2010 Cell Biology Luminal calcium is a regulator in the early secretory pathway Chairperson: Jesse Hay Calcium is an important regulatory ion which acts as a trigger or is required at a basal level for many membrane fusion events.
    [Show full text]
  • The Gramicidin Ion Channel: a Model Membrane Protein ⁎ Devaki A
    Biochimica et Biophysica Acta 1768 (2007) 2011–2025 www.elsevier.com/locate/bbamem Review The gramicidin ion channel: A model membrane protein ⁎ Devaki A. Kelkar 1, Amitabha Chattopadhyay Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India Received 10 August 2006; received in revised form 9 May 2007; accepted 10 May 2007 Available online 18 May 2007 Abstract The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid–protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media. © 2007 Elsevier B.V. All rights reserved. Keywords: Gramicidin; Ion Channel; Tryptophan; Membrane Interface; Lipid–protein interaction Contents 1. Introduction..............................................................2012 2. Gramicidin conformation in membranes ...............................................2012 3. Gramicidin tryptophans at the membrane
    [Show full text]
  • Biophysics and Modeling of Mechanotransduction in Neurons: a Review
    mathematics Review Biophysics and Modeling of Mechanotransduction in Neurons: A Review Martina Nicoletti 1,2,† , Letizia Chiodo 1,† and Alessandro Loppini 1,∗,† 1 Nonlinear Physics and Mathematical Models Research Unit, Engineering Department, Campus Bio-Medico University of Rome, Via Á. del Portillo 21, 00128 Rome, Italy; [email protected] (M.N.); [email protected] (L.C.) 2 Center for Life Nanoscience CLNS@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy * Correspondence: [email protected]; Tel.: +39-06225419660 † These authors contributed equally to this work. Abstract: Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensa- tion occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details. Keywords: mechanosensing; mechanotransduction; ion channels; neurons; modeling; atomistic Citation: Nicoletti, M.; Chiodo, L.; modeling; molecular dynamics; multiscale; biomechanics; mechanobiology Loppini, A.
    [Show full text]
  • Investigating the Role of Chloride in Endocytic Organelle Acidification
    Investigating the role of chloride in endocytic organelle acidification By Mary R. Weston A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December 2017 © Mary R. Weston All rights reserved ABSTRACT Endocytic organelles maintain their characteristic, essential internal pH using the V-type ATPase H+-pump. Accumulation of H+ generates a voltage across the membrane; an additional ion, known as a counterion, must move to dissipate charge buildup. Chloride (Cl-) has been hypothesized to be an important counterion in the endosomal pathway, but its role is still debated. This thesis seeks to explore the role of counterions and the proteins that facilitate their movements in the acidification of clathrin-coated vesicles (CCVs), a subset of early endosomes, and lysosomes. We confirmed previous work showing that isolated bovine brain CCVs acidify in the presence of external Cl-, independent of the monovalent cations present. While unsuccessful at identifying the protein responsible for the observed anion transport, we used a new approach to confirm that most brain CCVs are synaptic vesicles. Secondly, because acidification in isolated lysosomes is Cl--dependent and the lysosomal protein ClC-7, a Cl-/H+ antiporter, moves Cl- into the organelles, this protein has been suggested to mediate such counterion movement. However, live cell ClC-7 knockout (KO) mouse lysosomes have the same pH as WT. We generated mice with a liver-specific deletion of ClC-7 to test these results in isolated lysosomes and live cells in parallel. While isolated ClC-7 KO lysosomes showed a drastic decrease in Cl--facilitated acidification, lysosomal pH was similar in WT and KO hepatocytes, even during metabolic and base challenges.
    [Show full text]