Foundational Issues in Artificial Intelligence and Cognitive Science Impasse and Solution

Total Page:16

File Type:pdf, Size:1020Kb

Foundational Issues in Artificial Intelligence and Cognitive Science Impasse and Solution FOUNDATIONAL ISSUES IN ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE IMPASSE AND SOLUTION Mark H. Bickhard Lehigh University Loren Terveen AT&T Bell Laboratories forthcoming, 1995 Elsevier Science Publishers Contents Preface xi Introduction 1 A PREVIEW 2 I GENERAL CRITIQUE 5 1 Programmatic Arguments 7 CRITIQUES AND QUALIFICATIONS 8 DIAGNOSES AND SOLUTIONS 8 IN-PRINCIPLE ARGUMENTS 9 2 The Problem of Representation 11 ENCODINGISM 11 Circularity 12 Incoherence — The Fundamental Flaw 13 A First Rejoinder 15 The Necessity of an Interpreter 17 3 Consequences of Encodingism 19 LOGICAL CONSEQUENCES 19 Skepticism 19 Idealism 20 Circular Microgenesis 20 Incoherence Again 20 Emergence 21 4 Responses to the Problems of Encodings 25 FALSE SOLUTIONS 25 Innatism 25 Methodological Solipsism 26 Direct Reference 27 External Observer Semantics 27 Internal Observer Semantics 28 Observer Idealism 29 Simulation Observer Idealism 30 vi SEDUCTIONS 31 Transduction 31 Correspondence as Encoding: Confusing Factual and Epistemic Correspondence 32 5 Current Criticisms of AI and Cognitive Science 35 AN APORIA 35 Empty Symbols 35 ENCOUNTERS WITH THE ISSUES 36 Searle 36 Gibson 40 Piaget 40 Maturana and Varela 42 Dreyfus 42 Hermeneutics 44 6 General Consequences of the Encodingism Impasse 47 REPRESENTATION 47 LEARNING 47 THE MENTAL 51 WHY ENCODINGISM? 51 II INTERACTIVISM: AN ALTERNATIVE TO ENCODINGISM 53 7 The Interactive Model 55 BASIC EPISTEMOLOGY 56 Representation as Function 56 Epistemic Contact: Interactive Differentiation and Implicit Definition 60 Representational Content 61 EVOLUTIONARY FOUNDATIONS 65 SOME COGNITIVE PHENOMENA 66 Perception 66 Learning 69 Language 71 8 Implications for Foundational Mathematics 75 TARSKI 75 Encodings for Variables and Quantifiers 75 Tarski’s Theorems and the Encodingism Incoherence 76 Representational Systems Adequate to Their Own Semantics 77 Observer Semantics 78 Truth as a Counterexample to Encodingism 79 vii TURING 80 Semantics for the Turing Machine Tape 81 Sequence, But Not Timing 81 Is Timing Relevant to Cognition? 83 Transcending Turing Machines 84 III ENCODINGISM: ASSUMPTIONS AND CONSEQUENCES 87 9 Representation: Issues within Encodingism 89 EXPLICIT ENCODINGISM IN THEORY AND PRACTICE 90 Physical Symbol Systems 90 The Problem Space Hypothesis 98 SOAR 100 PROLIFERATION OF BASIC ENCODINGS 106 CYC — Lenat’s Encyclopedia Project 107 TRUTH-VALUED VERSUS NON-TRUTH-VALUED 118 Procedural vs Declarative Representation 119 PROCEDURAL SEMANTICS 120 Still Just Input Correspondences 121 SITUATED AUTOMATA THEORY 123 NON-COGNITIVE FUNCTIONAL ANALYSIS 126 The Observer Perspective Again 128 BRIAN SMITH 130 Correspondence 131 Participation 131 No Interaction 132 Correspondence is the Wrong Category 133 ADRIAN CUSSINS 134 INTERNAL TROUBLES 136 Too Many Correspondences 137 Disjunctions 138 Wide and Narrow 140 Red Herrings 142 10 Representation: Issues about Encodingism 145 SOME EXPLORATIONS OF THE LITERATURE 145 Stevan Harnad 145 Radu Bogdan 164 Bill Clancey 169 A General Note on Situated Cognition 174 Rodney Brooks: Anti-Representationalist Robotics 175 Agre and Chapman 178 Benny Shanon 185 viii Pragmatism 191 Kuipers’ Critters 195 Dynamic Systems Approaches 199 A DIAGNOSIS OF THE FRAME PROBLEMS 214 Some Interactivism-Encodingism Differences 215 Implicit versus Explicit Classes of Input Strings 217 Practical Implicitness: History and Context 220 Practical Implicitness: Differentiation and Apperception 221 Practical Implicitness: Apperceptive Context Sensitivities 222 A Counterargument: The Power of Logic 223 Incoherence: Still another corollary 229 Counterfactual Frame Problems 230 The Intra-object Frame Problem 232 11 Language 235 INTERACTIVIST VIEW OF COMMUNICATION 237 THEMES EMERGING FROM AI RESEARCH IN LANGUAGE 239 Awareness of the Context-dependency of Language 240 Awareness of the Relational Distributivity of Meaning 240 Awareness of Process in Meaning 242 Toward a Goal-directed, Social Conception of Language 247 Awareness of Goal-directedness of Language 248 Awareness of Social, Interactive Nature of Language 252 Conclusions 259 12 Learning 261 RESTRICTION TO A COMBINATORIC SPACE OF ENCODINGS 261 LEARNING FORCES INTERACTIVISM 262 Passive Systems 262 Skepticism, Disjunction, and the Necessity of Error for Learning 266 Interactive Internal Error Conditions 267 What Could be in Error? 270 Error as Failure of Interactive Functional Indications — of Interactive Implicit Predications 270 Learning Forces Interactivism 271 Learning and Interactivism 272 COMPUTATIONAL LEARNING THEORY 273 INDUCTION 274 GENETIC AI 275 Overview 276 Convergences 278 Differences 278 Constructivism 281 ix 13 Connectionism 283 OVERVIEW 283 STRENGTHS 286 WEAKNESSES 289 ENCODINGISM 292 CRITIQUING CONNECTIONISM AND AI LANGUAGE APPROACHES 296 IV SOME NOVEL ARCHITECTURES 299 14 Interactivism and Connectionism 301 INTERACTIVISM AS AN INTEGRATING PERSPECTIVE 301 Hybrid Insufficiency 303 SOME INTERACTIVIST EXTENSIONS OF ARCHITECTURE 304 Distributivity 304 Metanets 307 15 Foundations of an Interactivist Architecture 309 THE CENTRAL NERVOUS SYSTEM 310 Oscillations and Modulations 310 Chemical Processing and Communication 311 Modulatory “Computations” 312 The Irrelevance of Standard Architectures 313 A Summary of the Argument 314 PROPERTIES AND POTENTIALITIES 317 Oscillatory Dynamic Spaces 317 Binding 318 Dynamic Trajectories 320 “Formal” Processes Recovered 322 Differentiators In An Oscillatory Dynamics 322 An Alternative Mathematics 323 The Interactive Alternative 323 V CONCLUSIONS 325 16 Transcending the Impasse 327 FAILURES OF ENCODINGISM 327 INTERACTIVISM 329 SOLUTIONS AND RESOURCES 330 TRANSCENDING THE IMPASSE 331 References 333 Index 367 Preface Artificial Intelligence and Cognitive Science are at a foundational impasse which is at best only partially recognized. This impasse has to do with assumptions concerning the nature of representation: standard approaches to representation are at root circular and incoherent. In particular, Artificial Intelligence research and Cognitive Science are conceptualized within a framework that assumes that cognitive processes can be modeled in terms of manipulations of encoded symbols. Furthermore, the more recent developments of connectionism and Parallel Distributed Processing, even though the issue of manipulation is contentious, share the basic assumption concerning the encoding nature of representation. In all varieties of these approaches, representation is construed as some form of encoding correspondence. The presupposition that representation is constituted as encodings, while innocuous for some applied Artificial Intelligence research, is fatal for the further reaching programmatic aspirations of both Artificial Intelligence and Cognitive Science. First, this encodingist assumption constitutes a presupposition about a basic aspect of mental phenomena — representation — rather than constituting a model of that phenomenon. Aspirations of Artificial Intelligence and Cognitive Science to provide any foundational account of representation are thus doomed to circularity: the encodingist approach presupposes what it purports to be (programmatically) able to explain. Second, the encoding assumption is not only itself in need of explication and modeling, but, even more critically, the standard presupposition that representation is essentially constituted as encodings is logically fatally flawed. This flaw yields numerous subsidiary consequences, both conceptual and applied. This book began as an article attempting to lay out this basic critique at the programmatic level. Terveen suggested that it would be more powerful to supplement the general critique with explorations of actual projects and positions in the fields, showing how the foundational flaws visit themselves upon the efforts of researchers. We began that task, and, among other things, discovered that there is no natural closure xii Preface to it — there are always more positions that could be considered, and they increase in number exponentially with time. There is no intent and no need, however, for our survey to be exhaustive. It is primarily illustrative and demonstrative of the problems that emerge from the underlying programmatic flaw. Our selections of what to include in the survey have had roughly three criteria. We favored: 1) major and well known work, 2) positions that illustrate interesting deleterious consequences of the encodingism framework, and 3) positions that illustrate the existence and power of moves in the direction of the alternative framework that we propose. We have ended up, en passant, with a representative survey of much of the field. Nevertheless, there remain many more positions and research projects that we would like to have been able to address. The book has gestated and grown over several years. Thanks are due to many people who have contributed to its development, with multitudinous comments, criticisms, discussions, and suggestions on both the manuscript and the ideas behind it. These include, Gordon Bearn, Lesley Bickhard, Don Campbell, Robert Campbell, Bill Clancey, Bob Cooper, Eric Dietrich, Carol Feldman, Ken Ford, Charles Guignon, Cliff Hooker, Norm Melchert, Benny Shanon, Peter Slezak, and Tim Smithers. Deepest thanks are also due to the Henry R. Luce Foundation for support to Mark Bickhard during the final years of this project. Mark H. Bickhard Henry R. Luce Professor of Cognitive Robotics & the Philosophy of Knowledge Department of Psychology 17 Memorial Drive East Lehigh University Bethlehem, PA 18015 [email protected]
Recommended publications
  • Artificial General Intelligence and Classical Neural Network
    Artificial General Intelligence and Classical Neural Network Pei Wang Department of Computer and Information Sciences, Temple University Room 1000X, Wachman Hall, 1805 N. Broad Street, Philadelphia, PA 19122 Web: http://www.cis.temple.edu/∼pwang/ Email: [email protected] Abstract— The research goal of Artificial General Intelligence • Capability. Since we often judge the level of intelligence (AGI) and the notion of Classical Neural Network (CNN) are of other people by evaluating their problem-solving capa- specified. With respect to the requirements of AGI, the strength bility, some people believe that the best way to achieve AI and weakness of CNN are discussed, in the aspects of knowledge representation, learning process, and overall objective of the is to build systems that can solve hard practical problems. system. To resolve the issues in CNN in a general and efficient Examples: various expert systems. way remains a challenge to future neural network research. • Function. Since the human mind has various cognitive functions, such as perceiving, learning, reasoning, acting, I. ARTIFICIAL GENERAL INTELLIGENCE and so on, some people believe that the best way to It is widely recognized that the general research goal of achieve AI is to study each of these functions one by Artificial Intelligence (AI) is twofold: one, as certain input-output mapping. Example: various intelligent tools. • As a science, it attempts to provide an explanation of • Principle. Since the human mind seems to follow certain the mechanism in the human mind-brain complex that is principles of information processing, some people believe usually called “intelligence” (or “cognition”, “thinking”, that the best way to achieve AI is to let computer systems etc.).
    [Show full text]
  • The Dramatic True Story of the Frame Default
    The Dramatic True Story of the Frame Default Vladimir Lifschitz University of Texas at Austin Abstract This is an expository article about the solution to the frame problem pro- posed in 1980 by Raymond Reiter. For years, his “frame default” remained untested and suspect. But developments in some seemingly unrelated areas of computer science—logic programming and satisfiability solvers—eventually exonerated the frame default and turned it into a basis for important appli- cations. 1 Introduction This is an expository article about the dramatic story of the solution to the frame problem proposed in 1980 by Raymond Reiter [22]. For years, his “frame default” remained untested and suspect. But developments in some seemingly unrelated ar- eas of computer science—logic programming and satisfiability solvers—eventually exonerated the frame default and turned it into a basis for important applications. This paper grew out of the Great Moments in KR talk given at the 13th Inter- national Conference on Principles of Knowledge Representation and Reasoning. It does not attempt to provide a comprehensive history of research on the frame problem: the story of the frame default is only a small part of the big picture, and many deep and valuable ideas are not even mentioned here. The reader can learn more about work on the frame problem from the monographs [17, 21, 24, 25, 27]. 2 What Is the Frame Problem? The frame problem [16] is the problem of describing a dynamic domain without explicitly specifying which conditions are not affected by executing actions. Here is a simple example. Initially, Alice is in the room, and Bob is not.
    [Show full text]
  • Cognitive Science 1
    Cognitive Science 1 • Linguistics, Minor (https://e-catalogue.jhu.edu/arts-sciences/full- COGNITIVE SCIENCE time-residential-programs/degree-programs/cognitive-science/ linguistics-minor/) http://www.cogsci.jhu.edu For current course information and registration go to https://sis.jhu.edu/ Cognitive science is the study of the human mind and brain, focusing on classes/ how the mind represents and manipulates knowledge and how mental representations and processes are realized in the brain. Conceiving of the mind as an abstract computing device instantiated in the brain, Courses cognitive scientists endeavor to understand the mental computations AS.050.102. Language and Mind. 3 Credits. underlying cognitive functioning and how these computations are Introductory course dealing with theory, methods, and current research implemented by neural tissue. Cognitive science has emerged at the topics in the study of language as a component of the mind. What it is interface of several disciplines. Central among these are cognitive to "know" a language: components of linguistic knowledge (phonetics, psychology, linguistics, and portions of computer science and artificial phonology, morphology, syntax, semantics) and the course of language intelligence; other important components derive from work in the acquisition. How linguistic knowledge is put to use: language and the neurosciences, philosophy, and anthropology. This diverse ancestry brain and linguistic processing in various domains. has brought into cognitive science several different perspectives and Area: Natural Sciences, Social and Behavioral Sciences methodologies. Cognitive scientists endeavor to unite such varieties AS.050.105. Introduction to Cognitive Neuropsychology. 3 Credits. of perspectives around the central goal of characterizing the structure When the brain is damaged or fails to develop normally, even the most of human intellectual functioning.
    [Show full text]
  • Artificial Intelligence: Distinguishing Between Types & Definitions
    19 NEV. L.J. 1015, MARTINEZ 5/28/2019 10:48 AM ARTIFICIAL INTELLIGENCE: DISTINGUISHING BETWEEN TYPES & DEFINITIONS Rex Martinez* “We should make every effort to understand the new technology. We should take into account the possibility that developing technology may have im- portant societal implications that will become apparent only with time. We should not jump to the conclusion that new technology is fundamentally the same as some older thing with which we are familiar. And we should not hasti- ly dismiss the judgment of legislators, who may be in a better position than we are to assess the implications of new technology.”–Supreme Court Justice Samuel Alito1 TABLE OF CONTENTS INTRODUCTION ............................................................................................. 1016 I. WHY THIS MATTERS ......................................................................... 1018 II. WHAT IS ARTIFICIAL INTELLIGENCE? ............................................... 1023 A. The Development of Artificial Intelligence ............................... 1023 B. Computer Science Approaches to Artificial Intelligence .......... 1025 C. Autonomy .................................................................................. 1026 D. Strong AI & Weak AI ................................................................ 1027 III. CURRENT STATE OF AI DEFINITIONS ................................................ 1029 A. Black’s Law Dictionary ............................................................ 1029 B. Nevada .....................................................................................
    [Show full text]
  • Why Dreyfus' Frame Problem Argument Cannot Justify Anti
    Why Dreyfus’ Frame Problem Argument Cannot Justify Anti- Representational AI Nancy Salay ([email protected]) Department of Philosophy, Watson Hall 309 Queen‘s University, Kingston, ON K7L 3N6 Abstract disembodied cognitive models will not work, and this Hubert Dreyfus has argued recently that the frame problem, conclusion needs to be heard. By disentangling the ideas of discussion of which has fallen out of favour in the AI embodiment and representation, at least with respect to community, is still a deal breaker for the majority of AI Dreyfus‘ frame problem argument, the real locus of the projects, despite the fact that the logical version of it has been general polemic between traditional computational- solved. (Shanahan 1997, Thielscher 1998). Dreyfus thinks representational cognitive science and the more recent that the frame problem will disappear only once we abandon the Cartesian foundations from which it stems and adopt, embodied approaches is revealed. From this, I hope that instead, a thoroughly Heideggerian model of cognition, in productive debate will ensue. particular one that does not appeal to representations. I argue The paper proceeds in the following way: in section I, I that Dreyfus is too hasty in his condemnation of all describe and distinguish the logical version of the frame representational views; the argument he provides licenses problem and the philosophical one that remains unsolved; in only a rejection of disembodied models of cognition. In casting his net too broadly, Dreyfus circumscribes the section II, I rehearse Dreyfus‘ negative argument, what I‘ll cognitive playing field so closely that one is left wondering be calling his frame problem argument; in section III, I how his Heideggerian alternative could ever provide a highlight some key points from Dreyfus‘ positive account of foundation explanatorily robust enough for a theory of a Heideggerian alternative; in section IV, I make my case cognition.
    [Show full text]
  • KNOWLEDGE ACCORDING to IDEALISM Idealism As a Philosophy
    KNOWLEDGE ACCORDING TO IDEALISM Idealism as a philosophy had its greatest impact during the nineteenth century. It is a philosophical approach that has as its central tenet that ideas are the only true reality, the only thing worth knowing. In a search for truth, beauty, and justice that is enduring and everlasting; the focus is on conscious reasoning in the mind. The main tenant of idealism is that ideas and knowledge are the truest reality. Many things in the world change, but ideas and knowledge are enduring. Idealism was often referred to as “idea-ism”. Idealists believe that ideas can change lives. The most important part of a person is the mind. It is to be nourished and developed. Etymologically Its origin is: from Greek idea “form, shape” from weid- also the origin of the “his” in his-tor “wise, learned” underlying English “history.” In Latin this root became videre “to see” and related words. It is the same root in Sanskrit veda “knowledge as in the Rig-Veda. The stem entered Germanic as witan “know,” seen in Modern German wissen “to know” and in English “wisdom” and “twit,” a shortened form of Middle English atwite derived from æt “at” +witen “reproach.” In short Idealism is a philosophical position which adheres to the view that nothing exists except as it is an idea in the mind of man or the mind of God. The idealist believes that the universe has intelligence and a will; that all material things are explainable in terms of a mind standing behind them. PHILOSOPHICAL RATIONALE OF IDEALISM a) The Universe (Ontology or Metaphysics) To the idealist, the nature of the universe is mind; it is an idea.
    [Show full text]
  • Answers to Exercises
    Appendix A Answers to Exercises Answers to some of the exercises can be verified by running CLINGO, and they are not included here. 2.1. (c) Replace rule (1.1) by large(C) :- size(C,S), S > 500. 2.2. (a) X is a child of Y if Y is a parent of X. 2.3. (a) large(germany) :- size(germany,83), size(uk,64), 83 > 64. (b) child(dan,bob) :- parent(bob,dan). 2.4. (b), (c), and (d). 2.5. parent(ann,bob; bob,carol; bob,dan). 2.8. p(0,0*0+0+41) :- 0 = 0..3. 2.10. p(2**N,2**(N+1)) :- N = 0..3. 2.11. (a) p(N,(-1)**N) :- N = 0..4. (b) p(M,N) :- M = 1..4, N = 1..4, M >= N. 2.12. (a) grandparent(X,Z) :- parent(X,Y), parent(Y,Z). 2.13. (a) sibling(X,Y) :- parent(Z,X), parent(Z,Y), X != Y. 2.14. enrolled(S) :- enrolled(S,C). 2.15. same_city(X,Y) :- lives_in(X,C), lives_in(Y,C), X!=Y. 2.16. older(X,Y) :- age(X,M), age(Y,N), M > N. 2.18. Line 5: noncoprime(N) :- N = 1..n, I = 2..N, N\I = 0, k\I = 0. Line 10: coprime(N) :- N = 1..n, not noncoprime(N). © Springer Nature Switzerland AG 2019 149 V. Lifschitz, Answer Set Programming, https://doi.org/10.1007/978-3-030-24658-7 150 A Answers to Exercises 2.19. Line 6: three(N) :- N = 1..n, I = 0..n, J = 0..n, K = 0..n, N=I**2+J**2+K**2.
    [Show full text]
  • Theoretical Models of Consciousness: a Scoping Review
    brain sciences Review Theoretical Models of Consciousness: A Scoping Review Davide Sattin 1,2,*, Francesca Giulia Magnani 1, Laura Bartesaghi 1, Milena Caputo 1, Andrea Veronica Fittipaldo 3, Martina Cacciatore 1, Mario Picozzi 4 and Matilde Leonardi 1 1 Neurology, Public Health, Disability Unit—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; [email protected] (F.G.M.); [email protected] (L.B.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (M.L.) 2 Experimental Medicine and Medical Humanities-PhD Program, Biotechnology and Life Sciences Department and Center for Clinical Ethics, Insubria University, 21100 Varese, Italy 3 Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; veronicaandrea.fi[email protected] 4 Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, 21100 Varese, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2709 Abstract: The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue.
    [Show full text]
  • Reliability in Cognitive Neuroscience: a Meta-Meta-Analysis Books Written by William R
    Reliability in Cognitive Neuroscience: A Meta-Meta-Analysis Books Written by William R. Uttal Real Time Computers: Techniques and Applications in the Psychological Sciences Generative Computer Assisted Instruction (with Miriam Rogers, Ramelle Hieronymus, and Timothy Pasich) Sensory Coding: Selected Readings (Editor) The Psychobiology of Sensory Coding Cellular Neurophysiology and Integration: An Interpretive Introduction. An Autocorrelation Theory of Form Detection The Psychobiology of Mind A Taxonomy of Visual Processes Visual Form Detection in 3-Dimensional Space Foundations of Psychobiology (with Daniel N. Robinson) The Detection of Nonplanar Surfaces in Visual Space The Perception of Dotted Forms On Seeing Forms The Swimmer: An Integrated Computational Model of a Perceptual-Motor System (with Gary Bradshaw, Sriram Dayanand, Robb Lovell, Thomas Shepherd, Ramakrishna Kakarala, Kurt Skifsted, and Greg Tupper) Toward A New Behaviorism: The Case against Perceptual Reductionism Computational Modeling of Vision: The Role of Combination (with Ramakrishna Kakarala, Sriram Dayanand, Thomas Shepherd, Jaggi Kalki, Charles Lunskis Jr., and Ning Liu) The War between Mentalism and Behaviorism: On the Accessibility of Mental Processes The New Phrenology: On the Localization of Cognitive Processes in the Brain A Behaviorist Looks at Form Recognition Psychomyths: Sources of Artifacts and Misrepresentations in Scientifi c Cognitive neuroscience Dualism: The Original Sin of Cognitivism Neural Theories of Mind: Why the Mind-Brain Problem May Never Be Solved Human Factors in the Courtroom: Mythology versus Science The Immeasurable Mind: The Real Science of Psychology Time, Space, and Number in Physics and Psychology Distributed Neural Systems: Beyond the New Phrenology Neuroscience in the Courtroom: What Every Lawyer Should Know about the Mind and the Brain Mind and Brain: A Critical Appraisal of Cognitive Neuroscience Reliability in Cognitive Neuroscience: A Meta-Meta-Analysis Reliability in Cognitive Neuroscience: A Meta-Meta-Analysis William R.
    [Show full text]
  • Behavior Trees in Robotics and AI
    Michele Colledanchise and Petter Ogren¨ Behavior Trees in Robotics and AI An Introduction arXiv:1709.00084v4 [cs.RO] 3 Jun 2020 Contents 1 What are Behavior Trees? ....................................... 3 1.1 A Short History and Motivation of BTs . .4 1.2 What is wrong with FSMs? The Need for Reactiveness and Modularity . .5 1.3 Classical Formulation of BTs. .6 1.3.1 Execution Example of a BT . .9 1.3.2 Control Flow Nodes with Memory . 11 1.4 Creating a BT for Pac-Man from Scratch . 12 1.5 Creating a BT for a Mobile Manipulator Robot . 14 1.6 Use of BTs in Robotics and AI . 15 1.6.1 BTs in autonomous vehicles . 16 1.6.2 BTs in industrial robotics . 18 1.6.3 BTs in the Amazon Picking Challenge . 20 1.6.4 BTs inside the social robot JIBO . 21 2 How Behavior Trees Generalize and Relate to Earlier Ideas . 23 2.1 Finite State Machines . 23 2.1.1 Advantages and disadvantages . 24 2.2 Hierarchical Finite State Machines . 24 2.2.1 Advantages and disadvantages . 24 2.2.2 Creating a FSM that works like a BTs . 29 2.2.3 Creating a BT that works like a FSM . 32 2.3 Subsumption Architecture . 32 2.3.1 Advantages and disadvantages . 33 2.3.2 How BTs Generalize the Subsumption Architecture . 33 2.4 Teleo-Reactive programs . 33 2.4.1 Advantages and disadvantages . 34 2.4.2 How BTs Generalize Teleo-Reactive Programs . 35 2.5 Decision Trees . 35 2.5.1 Advantages and disadvantages .
    [Show full text]
  • Is AI Intelligent, Really? Bruce D
    Seattle aP cific nivU ersity Digital Commons @ SPU SPU Works Summer August 23rd, 2019 Is AI intelligent, really? Bruce D. Baker Seattle Pacific nU iversity Follow this and additional works at: https://digitalcommons.spu.edu/works Part of the Artificial Intelligence and Robotics Commons, Comparative Methodologies and Theories Commons, Epistemology Commons, Philosophy of Science Commons, and the Practical Theology Commons Recommended Citation Baker, Bruce D., "Is AI intelligent, really?" (2019). SPU Works. 140. https://digitalcommons.spu.edu/works/140 This Article is brought to you for free and open access by Digital Commons @ SPU. It has been accepted for inclusion in SPU Works by an authorized administrator of Digital Commons @ SPU. Bruce Baker August 23, 2019 Is AI intelligent, really? Good question. On the surface, it seems simple enough. Assign any standard you like as a demonstration of intelligence, and then ask whether you could (theoretically) set up an AI to perform it. Sure, it seems common sense that given sufficiently advanced technology you could set up a computer or a robot to do just about anything that you could define as being doable. But what does this prove? Have you proven the AI is really intelligent? Or have you merely shown that there exists a solution to your pre- determined puzzle? Hmmm. This is why AI futurist Max Tegmark emphasizes the difference between narrow (machine-like) and broad (human-like) intelligence.1 And so the question remains: Can the AI be intelligent, really, in the same broad way its creator is? Why is this question so intractable? Because intelligence is not a monolithic property.
    [Show full text]
  • Artificial Intelligence/Artificial Wisdom
    Artificial Intelligence/Artificial Wisdom - A Drive for Improving Behavioral and Mental Health Care (06 September to 10 September 2021) Department of Computer Science & Information Technology Central University of Jammu, J&K-181143 Preamble An Artificial Intelligence is the capability of a machine to imitate intelligent human behaviour. Machine learning is based on the idea that machines should be able to learn and adapt through experience. Machine learning is a subset of AI. That is, all machine learning counts as AI, but not all AI counts as machine learning. Artificial intelligence (AI) technology holds both great promises to transform mental healthcare and potential pitfalls. Artificial intelligence (AI) is increasingly employed in healthcare fields such as oncology, radiology, and dermatology. However, the use of AI in mental healthcare and neurobiological research has been modest. Given the high morbidity and mortality in people with psychiatric disorders, coupled with a worsening shortage of mental healthcare providers, there is an urgent need for AI to help identify high-risk individuals and provide interventions to prevent and treat mental illnesses. According to the publication Spectrum News, a form of AI called "deep learning" is sometimes better able than human beings to spot relevant patterns. This five days course provides an overview of AI approaches and current applications in mental healthcare, a review of recent original research on AI specific to mental health, and a discussion of how AI can supplement clinical practice while considering its current limitations, areas needing additional research, and ethical implications regarding AI technology. The proposed workshop is envisaged to provide opportunity to our learners to seek and share knowledge and teaching skills in cutting edge areas from the experienced and reputed faculty.
    [Show full text]