5th International Symposium on Neutrinos and Dark Matter in Nuclear Physics University of Jyvaskyla, Finland, June 1-5 2015

Supernova Neutrinos and Nucleosynthesis

Taka KAJINO National Astronomical Observatory of Japan Department of Astronomy, The University of Tokyo Purpose Nuclear EOS & n-Oscillation What happens to neutrinos once they leave the ? Supernova Relic Neutrino (SRN) n-Mass Hierarchy & Cosmic Clock What happens as neutrinos flow through the supernova outer layers ? n–induced nucleosynthesis probes n- hierarchy and nn self-interactions. Origin of R-Process What happens in the innermost core and its atmosphere? Core-collapse SNe vs. binary neutron mergers Two Astron. Relic SN- EOS, n- ProblemsG.J. Mathews, J. Hidaka, T. Kajino & J. Suzuki, ApJ 790(2014),115Oscill. ― SNR problem. K. Nakazato, E. Mochida, Y, Niino,n H. Suzuki, ApJ 804 (2015), 75 ― Metallicity Evol. Supernova Rate Red Super-Giant Problem Problem failed-SNe with BH ! Critical mass for MC f-SNe ? Horiuchi, Beacom et al., ApJ 738 (2011) 154. Smartt, S. J. 2009, ARA&A, 47, 63 Simultaneous Solution ? at BIRTH !

MC =

25M BH 50% missing?

at DEATH ! 16.5 +/- 1.5 M SNR & RSG Problems vs. Initial Mass Function Cosmic Star Formation Rate

Initial Mass 16.5M ← M = Function C 25M -2.35 f0(M) ∝ M

Salpeter (1955) Simultaneous Solution What Signal ? Relic SN-n

Hidaka, Kajino, Mathews, Sumiyoshi & Yoshida MC Smartt (2009) 2015, in preparation. 16.5 +/- 1.5 M

Failed SNe

(at z = 0) 0) = z (at SR problem, solved !

SN

Obs

/R

SN Th R Red-SG problem, solved !

8 fSN M min/M fSN(failed SNe) Sumiyoshi, Yamada, & Suzuki ApJ 688 (2008)1176.

Average Energy Tnx

Tne Tne

LS Shen Soft EoS Stiff EoS

Luminosity

Lne

Lne

Lnx Spectrum of Relic (RSNs) Totani et al. 1996, ApJ 460, 303; Lunadini 2009, PRL 102, 231101. Redshifted Expanding Universe

SN Rate n-Spectra from Various SNe 101 No n-oscillation

100

10-1

10-2 Atmospheric-n

103

10-4 0 10 20 30 40 50 60

En (MeV) Theoretical n-Spectra for Various Supernovae Electron-capture SNe Normal CC-SNe Failed SNe Pair-n heated SNe (Faint Ne) ( fromation) ( formation) (BH + Acc. Disk)

1.1 1.5s

ONeMg SNe: Hudepohl, et al., PRL 104 (2010). CC-SNe:Yoshida, et al., ApJ 686 (2008), 448; Suzuki & Kajino, J. Phys. G40 (2013) 83101. fSN (failed SNe): Sumiyoshi, et al., ApJ 688 (2008) 1176. * Shen-EOS (stiff): Shen et al. Nucl. Phys. A637 (1998) 435. * LS-EOS (soft, K=180): Lattimer & Swesty, Nucl. Phys. A535 (1991) 331.

GRBs: Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. E22 (2013) 1330022; Kajino, Mathews & Hayakawa, J. Phys. G41 (2014) 044007. Relic Supernova Neutrino(RSN) Spectrum

Hyper-Kamiokande (Mega-ton), Gd-loaded Water Cherenkov Detector Hidaka, Kajino, Mathews, Sumiyoshi & Yoshida 2015, in preparation. Setting Mc = 16.5 M (critical mass for NS vs. BH formation) to solve SN Normal Hierarchy Rate Problem and RSG Problem simultaneously. RSNs could be a good probe to test EoS and Mass Hierarchy!

Inverted Hierarchy failed SNe (Shen-EOS)

failed SNe (Shen-EOS) failed SNe (LS-EOS)

failed SNe (LS-EOS) n-Oscillation, SN-n and Nucleosynthesis8

p1 ne p2 ne 8 ne ne ne ne

MSW Matter Effect:

Through high-density resonance x p n p n 3 3 2 x 1 x at r ~ 10 g/cm electrons n-Collective Oscillation ne nmt ne Vacuum Oscillation nmt ne Si Layer Relic SN-n NS Nucleosynthesis R-process: n-process: ● Toshio Suzuki Heavy Nuclei 6,7Li, 9Be, 10,11B … ● Tac Hayakawa np-process: ● Tatsushi Shima 92Mo, 96Ru ? n-process 92Nb, 98Tc, 180Ta, 138La … ● M.-K. Cheoun Explo. Si-burn.: Fe-Co-Ni, Sterile-n : explosion 60Co, 55Mn, 51V … ● Grant Mathews n self-interaction (Collective Oscill.)

Neutrino Sphere Duan, Fuller, Carlson & Qian, PRL 97 (2006), 241101. Fogli, Lisi, Marrone & Mirizzi, JCAP 12, (2007) 010. Proto Balantekin & Pehlivan, J. Phys. G34, (2007) 47. Neutron Star ● Yamac Pehlivan Quest for solving ● Baha Balantekin many-body Hamiltonian ! Single angle approx. (Inverted) Y. Pehlivan, A.B. Balantekin, & T. Kajino, Phys. Rev. D84 (2011), 065008; Phys. Rev. D90 (2014), 065011. Swapping ! Symmetries (i.e. BCS, spin lattice)

Bethe ansatz → Invariance → Split Energy ES

Es n-Oscillation, SN-n and Nucleosynthesis8

p1 ne p2 ne 8 ne ne ne ne

MSW Matter Effect:

Through high-density resonance x p n p n 3 3 2 x 1 x at r ~ 10 g/cm electrons n n-Collective Oscillation e nmt ne Vacuum Oscillation nmt ne Si Layer Relic SN-n NS

R-process: n-process: Heavy Nuclei 6,7Li, 9Be, 10,11B …

np-process: 92Mo, 96Ru ? n-process 92Nb, 98Tc, 180Ta, 138La … Explo. Si-burn.: Fe-Co-Ni, 60Co, 55Mn, 51V … Where is the astrophysical site and conditions for the r-process ?

SN-explosion condition, suitable NSMs arrive in early Galaxy? for r-abundance pattern? Too late to merge 0.1Gy≤t≤103Gy? Universality Galactic chemo-dyn. Evol.

Core-Collapse Supernovae(n-driven) Binary Neutron-Star Mergers n-driven Wind, 3D Hydro, Newtonian, 11.2 M SPH, Newtonian, n-Leakage scheme Takiwaki, Kotake, Suwa, ApJ 786 (2014), 83. Korobkin et al., MNRAS 426 (2012), 1940. ν Credit-NASA ν ν ν ν Honda, Aoki, + Kajino et al. (SUBARU/HDS Collab.), 2004, SUBARU Telescope HDS ApJS 152, 113; 2004, ApJ 607, 474.

Metal-poor Large abundance dispersion at [Fe/H]<-2.5 is an evidence for INDIVIDUAL SN episode!

UNIVERSALITY Single (or a few) SN episode(s) may exhibit the same r-process abundance 0

pattern. ”UIVERSALITY” [Ba/Fe] + AGB 0 solar - s

SN II SN I + II

[Ba/Eu] solar - r

R-process elements from Type II SNe !

0 [Fe/H] [Eu/Fe] [Fe/H] = log(NFe/NH) ― log(NFe/NH)

Lack due to [Fe/H] obs. limit. 10 = time/10Gy [Fe/H] = -3 ・・・ -2 ・・・ -1 ・・・ 0 Early Universe [Fe/H] 10My 100My 1Gy 10Gy Core-Collapse Supernova: n-driven wind ● Shunji Nishimura G. Lorusso et al., (2015), PRL 114, 192501. Several numerical supernova simulations suggest;

Ye > 0.5 However, see Roberts, Reddy & Shen(PR C86, 065803, 12):

Ye < 0.5 in n-transport calculations by taking account of nucleonic potential plus Pauli-blocking effects. More studies of CCSNe!

Otsuki, Tagoshi, Kajino and Wanajo, ApJ 533(2000),424; Wanajo, Kajino, Mathews and Otsuki, ApJ 554(2001),578.

(n,g)⇔(g,n) Equilib. & Neutron-rich condition for successful r-process: Ye < 0.4 -1 - ne + n → p + e + ne + p → n + e T = 3.2 MeV < T = 4 MeV en = 3.15 Tn ne ne Magneto-hydrodynamic(MHD)Jet Supernova S. Nishimura, et al., ApJ , 642, 410 (2006) ; T. Takiwaki, K.Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012). Overproduction, SERIOUS observationally !

FRDM modelFRDM(finite-range drop- ETFSI model (Extended Thomas- let model; Moeller et al. 1995) Fermi + Strutinsky; Goriely 2003)

Mass A ● Shunji Nishimura Mass→ Shell A quenching? Nucl. Phys. Uncertaities ? Underproduction Possible Solutions Other Site? PROBLEM ! Binary Neutron-Star Mergers? Binary Neutron Star Mergers 236U & others Theory vs. Exp. Fission Recycling could operate!

Fission Fragment Mass Distribution

M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008).

Fission fragment mass A

CC Supernovae Bimordial or Trimodal FFD: theory experiment

Neutron Star Mergers Abundance Evolution of Neutron Star Merger Binary Neutron Star Merger Model : SPH simulation - Newtonian gravity, Neutrino Leakage scheme Korobkin et al., MNRAS 426 (2012), 1940. Later time Earlier time Fission Parent Fission Region A=290 Daughter

A parent>290

A parent<290 Abundance

Yield Fragment Fission of Yield Mass number Mass number A Solar System r-Process Abundance Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso, PRC (2015) n-Driven Wind Weak R-Process : S. Wanajo, ApJL, L22 (2013) SUM = 80%(n-SN weak-r) +15% (MHD Jet)+5%(NSM)

Neutron Star Merger

Magneto-Hydrodynam. Jet Supernova Relative Contributions of n-SNe : MHD Jets : NSMs from Galactic event rate observations ?

Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso, submitted (2015)

Ejected Mass [Msun] x Event Rate [/Galaxy/Century]

80% n-SN Weak-r = 7.4 x 10-4 x (1.9±1.1) a

15% SN MHD Jet = 0.6 x 10-2 x ((0.03±0.02) x (1.9±1.1)) b 5% NSM = (2±1) x 10-2 x (1-28)x10-3 c

Observations a 1.9±1.1 Diehl, et al., Nature 439, 45 (2006). b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012). Obs. Estimate c (1-28) x 10-3 Kalogera, et al., ApJ 614, L137 (2004). Binary NS-Mergers have arrived too late in early Galaxy ?

tc

13

Unrealistic choice of tc = 1-10 My 100 My 10 Gy 10 Tyr (10 y) =

Life of 0.8 massive stars 0.6

0.4

0.2 Orbital eccentricity eccentricity Orbital 0.0

1 10 100 1000 Orbital period (hours) Argast, Samland, Thielemann, Qian, A&A 416 (2004), 997. Difficulty of Binary tc = 100 My Neutron Star Mergers Neutron Star Mergers (Theory) Extremely Too long time-delay Metal-Poor Stars for coalescence !

D. R. Lorimer, Living Rev. Rel. 11 (2008), 8 ;

100 My < tc < 1000 Gy Universality Sun Wanderman and Piran (2014) (obs.) arXiv: 1405.5878 ;

tc ~ 4 Gy !?

-4 -3 -2 -1 0 [Fe/H]

Merging time scale tc is 1My 10My 100My 1Gy 10Gy cosmologically long ! Sneden, Cowan, Gallino, ARAA 46 (2008) 241. Fe/H t log ∝

HST-obs., Roederer et al., ApJ 747 (2012) L8. Fe/H 1010y =

-3.1 Te -3.0

-2.1 -2.9

-2.2 Solar system UNIVERSALITY ! -3.0 Sr-Y-Zr Ba Eu Au Pb Th U Metal-poor halo stars ELEMENTAL Abundance Pattern Z-dependence) Universality in Metal-Poor Halo Stars

125,126,128,130Te

ELEMENTAL Abundance Pattern (Z-dependence) Galactic Chemo-Dynamical Evolution of Hierarchical GalaxyDwarf Formation Galaxy Scenario from merging sub halos

N-Body/SPH Simulation: SNe + NSM (tc=100My), GAS MIXING in star forming region is included. Argast, Samland, Thielemann, Hirai, Kajino, et al. (COSNAP group) Qian, A&A 416 (2004), 997. ApJ (2015), submitted. Without GAS With GAS MIXING MIXING

tc = 100My tc = 100My

[Fe/H] Galactic Time [Fe/H] Galactic Time SUMMARY Relic Supernova-n:

1. Failed-Supernova model with MC = 16.5 M can solve the SN Rate problem and Red Super Giant problem simultaneously. 2. Detection of Relic Supernova n’s in HK (megaton Gd-loaded Water Cheren -kov detector) could discriminate the EoS and neutrino mass hierarchy. Origin of R-Process: 3. R-process could be a probe for the n-collective oscillation. → Future 4. Solar-system: SN n-Driven Winds and MHD-Jets explain the abundance peaks, whereas Binary NSMs fill in the deficiency below and above the peaks. 5. Metal-poor stars: SNe can contribute and explain the universality. Binary NSMs have arrived too late, but Galactic chemo-dynamical evolution with tc = 100My explains a part of dispersion of r-elements in EMP stars. 6. Fission mass distribution & recycling take the key of NSM r-process.

More careful simulations are highly desirable! Successful explosions, only for 10-13 M  15-25 M !?

Only weak r-process? S. Wanajo, ApJL, L22 (2013)

Sr Y Zr

Te Ba Eu Pt

Artificial parameter setting! Universality ELEMENTAL Abundances

128Te

Z=50

128Pd

N=82 Neutron number (N) RIKEN-RIBF New Ring Cyclotron (since 2007)

2010, October 2015 April (G. Lorusso2007,et al. March PRL 114, 192501) • Many nuclei on the r-process path are at our hand !

132Sn 2nd r-peak

78Ni Seed for r-process Pure s-process Pure s-process

Arlandini1999 Arlandini1999

Pure r-process Pure r-process

137/135 138/135 Solar system Solar system

136/135 136/135 136Ba=s-only: In the limit of 136Ba→0, pure r-component is extracted. Terada (Osaka Univ) Wanajo et al. Shibagaki Giuseppe Isotopic ratios et al. (2014) et al. (2014) et al. (2015) NSM NSM MHD-jet n-DW 137/135=1.07 ± 0.05 0.218 1.0 0.2 2.23 138/135=4.33 ± 0.52 0.294 1.1 0.18 3.46 b-deacy lifetime measurement at RIKEN/RIBF RIKEN β-Decay Experiment: Mass Number S. Nishimura et al., PRL 106, 052502 (2011); G. Rolusso et al. PRL (2015) , submitted. KTUY mass model One of the Best Models!

KUTY mass model Koura, Tachibana, Uno, Yamada, PTP 113, 305 (2005).

FRDM mass model Benchmark Paper P. MÖLLER, J.R. NIX, and K.-L. KRATZ, Atomic Data and Nuclear Data Tables 66 (1997), 131–343, Nuclear properties for astrophysical and radioactive ion beam applications. Magic Numbers and Neutron-Capture Processes

206Pb (s+r)

198Pt (r)

N=126

Z Neutron-rich condition, Ye < 0.5, required for successful r-process - ne + n → p + e + ne + p → n + e

Flow of Rapid Neutron-Capture Process on neutron-rich nuclei in SNe

tn << tb 9 20 24 -3 N (T~10 K, nn~10 -10 cm )

compactness parameterSN Simulation; Numerical Survey (large) Horiuchi, Nakamura, Takiwaki, Kotake, & Tanaka, MNRAS 445 (2014), L99

compactness parameter (large) (small) (small) r (Woosley, Heger & (WWoosleyeav,er Heger 200 & 2)Weaver 2002) r ProgenitorsProgenitors Progenitors with fail M < 16.5 M fail explode successfully! success 16.5 success

16.5 Fluid-Dynamical Data for Neutron Star Merger

Binary Neutron Star Merger: -Hotokezaka, K., Kiuchi, K., Kyutoku, K., -Korobkin et al., MNRAS 426 (2012), 1940. et al., PR D87 (2013), 024001. -Piran et al., MNRAS 430 (2013), 2121. -Sekiguchi et al., (2014), in preparation. -Rosswog et al., MNRAS 430 (2013), 2585. -Wanajo, Sekiguchi, Nishimura, Kiuchi, Kyutoku, Shibata, ApJ 789 (2014), L39. SPH simulation: -Newtonian gravity -Neutrino Leakage scheme Apply to R-Process Nucleosynthesis Ye~0.03 Extremely Fission

Region n-rich! Mass fraction Mass

Ye DEFICIENCY at A = 105-120: is caused by “Nuclear Physics” or “Astrophysics”? Shell quenching ? Neutron Star Merger ? MHD-Jet Supernova Model Nishimura, Kajino, Mathews, New RIKEN data of b-lives & Q-values Nishimura & Suzuki (2012), slightly improve this deficiency, PR C85, 048801. but not enough ! Fission Path of Mercury

Potential Depth of Fission Valley (near Scission Point) of Fm isotopes

Symmetric Valley around a=0, d=0.05

Asymmetric Valley around a=0.15, d=0.2 NS-Mergers with tc< 0.5Gy could contribute to [Fe/H]<-2 !

tc

0.1 Gyr 10 Gyr 10 Tyr (1013y)

0.8

0.6

0.4

0.2 Orbital eccentricity eccentricity Orbital 0.0 Wrong Assumption ~10 My (0.01 Gy) 1 10 100 1000 Life of massive stars → SNe Orbital period (hours)