Supernova Neutrino: Predicfion and Detecfion
Total Page:16
File Type:pdf, Size:1020Kb
Elba XIV, June 27th – July 1st, 2016 Supernova neutrino: predicon and detecon Shunsaku Horiuchi (Center for Neutrino Physics, Virginia Tech) Image credit: NASA/ESA Neutrinos as cosmic messengers Only neutrinos, with their extremely small interacon cross secons, can enable us to see into the interior of a star... John N. Bahcall, Phys. Rev. LeB. 12, 303 (1964) • allow us to see opNcally thick (to photons) regions Neutrinos: • experience liPle aenuaon through cosmic space • probes unrivaled extreme environments • direct hadronic indicator Neutrino detecNon is difficult; has been addressed by detectors, e.g., IceCube, Super- Kamiokande, and many others Neutrinos photons Source Cosmic rays Cosmic rays Elba XIV Horiuchi (Virginia Tech) MagneNc field 2 Massive stars core collapse Massive (>8Msun) star structure Core collapse (implosion) H He C O Si Fe ~8000 km Elba XIV Horiuchi (Virginia Tech) Adapted from slides by G. Raffelt 3 Core-collapse supernovae Newborn neutron star Explosion Core collapse (implosion) Explosion Neutrino Cooling Energy budget ~ 3 x 1053 erg R: 8000 km à ~20 km 99% into neutrinos ρ: ~109 g cm-3 à ~1014 g cm-3 (0.01% into photons) T: ~1010 K à ~30 MeV Elba XIV Horiuchi (Virginia Tech) Adapted from slides by G. Raffelt 4 SN1987A as an example Observaon: massive star progenitor, Observaon: MeV neutrino burst Type II supernova, nuclear decay lines, etc lasNng ~10s A few hours Great insights! Ø Importance of weak interacNons Ø Total binding energy Theory: core collapse emits Ø Direct evidence of Ni neutrinos and launches synthesis supernova shock, causes Ø Limits on axions and explosive nucleosynthesis similar new parNcles Ø Elba XIV Horiuchi (Virginia Tech) Many others 5 The explosion mechanism Stalled shock: The shock stalls, pressure è inside balanced by ram pressure outside: CriNcal curve 2 CriNcal curve p = ⇢∆v Explosions The neutrino mechanism: deposit a fracNon of the energy in neutrinos via capture on free neutrons & protons Bethe & Wilson (1985), Colgate et al (1966), … VS ! Neutrino luminosity Explosion failure and black hole formaon Mass accreNon rate To be tested with simulaon & observaons! Elba XIV Horiuchi (Virginia Tech) 6 Importance of asphericity Failure in spherical symmetry: long problem since the 1980, confirmed in 2000s e.g., Liebendoerfer et al (2001, 2004) SASI: Entropy @200ms 2D 2D 3D 3D Mixing! Convecon: 1D 1D Takiwaki et al (2014) Lentz et al (2015) 1000 km Elba XIV Horiuchi (Virginia Tech) 7 Systema0c core-collapse simula0ons SophisNcated simulaons [no systemac studies yet] • 3D with neutrino transport • Few progenitor models • Address: explosibility, neutrino and gravitaonal wave signals Hanke et al (2013, 2014), Melson et al (2015), Lentz et al (2015), Takiwaki et al (2016) … First systemac studies in spherically symmetry • Spherically symmetric with parameterized neutrino heang • ~700 progenitor models • GR gravity • Address: progenitor dependence, black hole formaon Ugliano et al (2012), O’Connor & O (2011, 2013), Ertl et al (2015) Recent systemac study in axis-symmetry • Axis-symmetric with simplified neutrino transport (IDSA) • ~400 progenitor models • Newtonian gravity • Address: progenitor dependence, SASI, other observables (MNi, etc) Nakamura et al (2014) Elba XIV Horiuchi (Virginia Tech) 8 Explodability and compactness Compactness: is a useful indicator to discuss the eventual outcome of core collapse Black hole formaon occurs more readily for Successful / failed explosion threshold occurs larger compactness. approximately ξ2.5 ~ 0.45 explosions O’Connor & O (2011), Ugliano et al (2012); see also BH formaon for ξ2.5 > 0.35 Pejcha & Thompson (2015), Ertl et al (2015) Other are close: Elba XIV Horiuchi (Virginia Tech) (and explosions for ξ2.5 < 0.15) 9 Results in 2D Two-dimensional systemac study • 2D with IDSA spectral transport • Newtonian • LS(K=220) EOS • 378 progenitor models (101 solar, 247 Z = 10-4, 30 zero metal) Elba XIV Horiuchi (Virginia Tech) 10 Results in 2D 2. Higher Mdot à later revival 5. More neutrino à energec explosion 1. Higher compactness à higher Mdot 3. Later revival à more massive NS 4. More massive NS à more neutrinos 6. Energec explosion à More Nickel Nakamura et al 2014 Elba XIV Horiuchi (Virginia Tech) 11 Cri0cal compactness in 2D Limitaon: • 2D setup is conducive to Failed explosions e.g., Hanke et al (2012) BH • Remnants above 2.4 Msun baryonic mass not realisNc and may not explode in reality. à CriNcal ξ2.5 < ~0.4 – 0.5 CriNcal compactness ξ2.5 In 1D: 0.35 – 0.45 In 2D: < 0.4 – 0.5 Horiuchi et al (2014) Elba XIV Horiuchi (Virginia Tech) 12 Neutrino emission in black hole forma0on Neutrino emission: Black hole necessarily goes through rapid mass accreNon à ν emission is Black hole case more luminous and hoPer (EOS (40Msun) dependent) NS case (13Msun) Sumiyoshi et al 2006, 2007, 2008, 2009 Fischer et al 2009 Nakazato et al 2008, 2010, 2012 Sekiguchi & Shibata 2011 O’Connor & O 2011 Plus various others Neutrino terminaon: Neutrino detectors can directly detect the moment of black hole formaon (if it occurs during the first O(10) seconds) Beacom et al (2001) Liebendoerfer et al (2004) Elba XIV Horiuchi (Virginia Tech) 13 What is the failed collapse rate? O’Connor & O (2011) Expected to be low (<7%) among solar metallicity stars. But it may be higher: many recent hints suggest the rate could be higher O’Connor & O (2011) Red supergiant problem Black hole mass funcNon Supernova rate Survey about nothing 10 ] -3 Birthrate of massive stars Mpc -1 yr -4 Rate of bright collapse 1 Li et al. (2010b) Cappellaro et al. (1999) Botticella et al. (2008) rate density [10 Cappellaro et al. (2005) Bazin et al. (2009) Dahlen et al. (2004) 0.1 0 0.2 0.4 0.6 0.8 1.0 Redshift z ~20-30% ~20-30% ~10-30% ~10-40% SmarB et al (2009) Kochanek et al (2014) Horiuchi et al (2010) Gerke et al (2014) Elba XIV Horiuchi (Virginia Tech) 14 1. Red supergiant problem Some stars don’t explode? Observaonally, the red supergiants with This is ~20% of massive stars. mass 16 – 25 Msun are not exploding The mass range in quesNon is an island of high compactness à theoreNcally more likely to form black holes. Assuming all explode With Mcut 16.5 Msun Horiuchi et al (2014); see also Kochanek (2014) Requires low criNcal ξ2.5 ~ 0.2 SmarB (2015) à Needs tesNng by 3D simulaons Elba XIV Horiuchi (Virginia Tech) 15 2. Black hole mass funcon Compact object mass funcNon: There are hints of a dearth of compact black A criNcal compactness ξ2.5~0.2 predicts a holes just above the NS mass range black hole mass funcNon with a cutoff e.g., Kreidberg et al. (2012), Kizeltan et al. (2013) Lovegrove & Woosley 2013, Kochanek (2014) Elba XIV Horiuchi (Virginia Tech) 16 3. Cosmic core-collapse rate Birth rate of massive stars From many observaons 10 (hundreds) ] -3 Birthrate of massive stars Observed supernova rate Derived from observaons Mpc -1 of luminous supernovae yr (many recent updates) -4 Rate of bright collapse (Core-collapse rate) – 1 (supernova rate) = DIM or DARK collapse rate Li et al. (2010b) Cappellaro et al. (1999) Approximately 30 – 50 % Botticella et al. (2008) • Some of this can be due to rate density [10 Cappellaro et al. (2005) Bazin et al. (2009) collapse to black holes. Dahlen et al. (2004) • Other possibiliNes include 0.1 0 0.2 0.4 0.6 0.8 1.0 ONeMg collapse, dust Redshift z (especially from mass loss), Horiuchi et al (2011) fall back intense collapse, Elba XIV Horiuchi (Virginia Tech) etc 17 Correcon due to dim supernovae Dust exNncNon distribuNon Large uncertainty from dust aenuaon à bePer model raises CCSN rate 30-50% Observed model Two more (2002hh & 2009hd) at 3.7 & 4.1 Number of supernovae Less ß Dust exNncNon à more Mala et al (2012) à Failed collapse fracNon reduced to 10-30% Dahlen et al, ApJ (2012) Elba XIV Horiuchi (Virginia Tech) 18 4. Searching for failed explosions: Survey about nothing Survey About Nothing • Look for the disappearance of red- supergiants in nearby galaxies • Monitor 27 galaxies with the Large Binocular Telescope à ~106 red supergiants with luminosity > 104 Lsun à expect ~1 core collapse /yr à In 10 years, sensiNve to 20 – 30% failed fracNon at 90%CL Kochanek et al. (2008) Gerke et al. (2015) Elba XIV Horiuchi (Virginia Tech) 19 SN2011dh deficit V-band R-band Results so far: In 4 years running, • 3 luminous CC supernovae: SN2009dh, SN2011dh, SN2012w With the candidate • 1 Type Ia (SN2011fe) • 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc) à Peak failed collapse rate 10 – 40% Note: the candidate’s mass esNmate is 18–25 Msun (!) Gerke et al. (2015) Elba XIV Horiuchi (Virginia Tech) 20 NEUTRINO PROBES Elba XIV Horiuchi (Virginia Tech) 21 Modern neutrino detectors MiniBooNE (800 ton LqSc) Nova (15 kton LqSc) [RENO (~18 kton LqSc)] Super-Kamiokande (32 kton H2O) SNO+ (800 ton LqSc) EGADS (200 ton H2O + Gd) HALO (76 ton Pb) KamLAND (1 kton LqSc) ~ [DUNE (~34 kton LAr)] [Hyper-Kamiokande ( 0.6 Mton H2O)] LVD (1 kton LqSc) Daya Bay (300 ton LqSc) Borexino (300 ton LqSc) [JUNO (~20 kton LqSc) ] [km3Net (Gton water)] IceCube (Gton Ice) [LENA (50 kton LqSc)] Elba XIV Horiuchi (Virginia Tech) 22 Neutrino detecon: Cherenkov Super-Kamiokande IceCube E > 10 GeV Eν > few MeV ν ν e lepton • Each OM has intrinsic noise of ~300 Hz • Supernova at 10 kpc yields ~200 (L/1052 erg/s) Hz hits per OM • Supernova appears as correlated noise in 5000 OMs e.g., Halzen et al (1995) Elba XIV Horiuchi (Virginia Tech) 23 Distance scales and physics outcomes Nν >> 1 : BURST Nν ~ 1 : MINI-BURST Nν << 1 : DIFFUSE SN rate ~ 0.01 /yr SN rate ~ 0.5 /yr SN rate ~ 108 /yr ~kpc ~Mpc ~Gpc Adapted from Beacom (2012) Galacc burst Mini-bursts Diffuse signal Physics Explosion supernova variety Average emission, mulN-populaons reach mechanism, with individual ID astronomy Required Basics are Next generaon Upcoming upgrades detector covered Elba XIV Horiuchi (Virginia Tech) 24 Supernova neutrino detecon High number stasNcs expected from a GalacNc core collapse (at 10 kpc distance) Mirizzi et al (2015) Elba XIV Horiuchi (Virginia Tech) 25 Observing the SASI mechanism SASI signatures: SASI’s Nme variaons (~10-20 ms) in the neutrino luminosity and energy can be measured, if we have excellent stasNcs.