Elba XIV, June 27th – July 1st, 2016

Supernova neutrino: predicon and detecon

Shunsaku Horiuchi (Center for Neutrino Physics, Virginia Tech)

Image credit: NASA/ESA Neutrinos as cosmic messengers

Only neutrinos, with their extremely small interacon cross secons, can enable us to see into the interior of a ... John N. Bahcall, Phys. Rev. Le. 12, 303 (1964)

• allow us to see opcally thick (to photons) regions Neutrinos: • experience lile aenuaon through cosmic space • probes unrivaled extreme environments • direct hadronic indicator Neutrino detecon is difficult; has been addressed by detectors, e.g., IceCube, Super- Kamiokande, and many others

Neutrinos

photons Source

Cosmic rays Cosmic rays Elba XIV Horiuchi (Virginia Tech) Magnec field 2 Massive core collapse

Massive (>8Msun) star structure Core collapse (implosion)

H He C O Si Fe

~8000 km

Elba XIV Horiuchi (Virginia Tech) Adapted from slides by G. Raffelt 3 Core-collapse supernovae

Newborn Explosion Core collapse (implosion) Explosion

Neutrino Cooling

Energy budget ~ 3 x 1053 erg R: 8000 km à ~20 km 99% into neutrinos ρ: ~109 g cm-3 à ~1014 g cm-3 (0.01% into photons) T: ~1010 K à ~30 MeV

Elba XIV Horiuchi (Virginia Tech) Adapted from slides by G. Raffelt 4 SN1987A as an example Observaon: massive star progenitor, Observaon: MeV neutrino burst Type II , nuclear decay lines, etc lasng ~10s

A few hours

Great insights! Ø Importance of weak interacons Ø Total binding energy Theory: core collapse emits Ø Direct evidence of Ni neutrinos and launches synthesis supernova shock, causes Ø Limits on axions and explosive nucleosynthesis similar new parcles Ø Elba XIV Horiuchi (Virginia Tech) Many others 5 The explosion mechanism

Stalled shock: The shock stalls, pressure è inside balanced by ram pressure outside: Crical curve 2 Crical curve p = ⇢v Explosions The neutrino mechanism: deposit a fracon of the energy in neutrinos via capture on free neutrons & protons Bethe & Wilson (1985), Colgate et al (1966), …

VS ! Neutrino luminosity Explosion failure and formaon

Mass accreon rate

To be tested with simulaon & observaons!

Elba XIV Horiuchi (Virginia Tech) 6 Importance of asphericity

Failure in spherical symmetry: long problem since the 1980, confirmed in 2000s e.g., Liebendoerfer et al (2001, 2004) SASI:

Entropy @200ms 2D 2D 3D 3D Mixing! Convecon:

1D 1D

Takiwaki et al (2014) Lentz et al (2015) 1000 km

Elba XIV Horiuchi (Virginia Tech) 7 Systemac core-collapse simulaons Sophiscated simulaons [no systemac studies yet] • 3D with neutrino transport • Few progenitor models • Address: explosibility, neutrino and gravitaonal wave signals Hanke et al (2013, 2014), Melson et al (2015), Lentz et al (2015), Takiwaki et al (2016) … First systemac studies in spherically symmetry • Spherically symmetric with parameterized neutrino heang • ~700 progenitor models • GR gravity • Address: progenitor dependence, black hole formaon Ugliano et al (2012), O’Connor & O (2011, 2013), Ertl et al (2015)

Recent systemac study in axis-symmetry • Axis-symmetric with simplified neutrino transport (IDSA) • ~400 progenitor models • Newtonian gravity

• Address: progenitor dependence, SASI, other observables (MNi, etc) Nakamura et al (2014) Elba XIV Horiuchi (Virginia Tech) 8 Explodability and compactness

Compactness: is a useful indicator to discuss the eventual outcome of core collapse

Black hole formaon occurs more readily for Successful / failed explosion threshold occurs larger compactness. approximately ξ2.5 ~ 0.45

explosions

O’Connor & O (2011), Ugliano et al (2012); see also BH formaon for ξ2.5 > 0.35 Pejcha & Thompson (2015), Ertl et al (2015) Other are close: Elba XIV Horiuchi (Virginia Tech) (and explosions for ξ2.5 < 0.15) 9 Results in 2D

Two-dimensional systemac study • 2D with IDSA spectral transport • Newtonian • LS(K=220) EOS • 378 progenitor models (101 solar, 247 Z = 10-4, 30 zero metal)

Elba XIV Horiuchi (Virginia Tech) 10 Results in 2D

2. Higher Mdot à later revival 5. More neutrino à energec explosion

1. Higher compactness à higher Mdot 3. Later revival à more massive NS

4. More massive NS à more neutrinos 6. Energec explosion à More Nickel

Nakamura et al 2014 Elba XIV Horiuchi (Virginia Tech) 11 Crical compactness in 2D

Limitaon: • 2D setup is conducive to Failed explosions e.g., Hanke et al (2012) BH • Remnants above 2.4 Msun baryonic mass not realisc and may not explode in reality.

à Crical ξ2.5 < ~0.4 – 0.5

Crical compactness ξ2.5 In 1D: 0.35 – 0.45 In 2D: < 0.4 – 0.5

Horiuchi et al (2014)

Elba XIV Horiuchi (Virginia Tech) 12 Neutrino emission in black hole formaon

Neutrino emission: Black hole necessarily goes through rapid mass accreon à ν emission is Black hole case more luminous and hoer (EOS (40Msun) dependent) NS case (13Msun) Sumiyoshi et al 2006, 2007, 2008, 2009 Fischer et al 2009 Nakazato et al 2008, 2010, 2012 Sekiguchi & Shibata 2011 O’Connor & O 2011 Plus various others

Neutrino terminaon: Neutrino detectors can directly detect the moment of black hole formaon (if it occurs during the first O(10) seconds) Beacom et al (2001) Liebendoerfer et al (2004)

Elba XIV Horiuchi (Virginia Tech) 13 What is the failed collapse rate? O’Connor & O (2011)

Expected to be low (<7%) among solar metallicity stars.

But it may be higher: many recent hints suggest the rate could be higher O’Connor & O (2011)

Red supergiant problem Black hole mass funcon Supernova rate Survey about nothing

10 ] -3 Birthrate of massive stars Mpc -1 yr -4 Rate of bright collapse 1

Li et al. (2010b) Cappellaro et al. (1999) Botticella et al. (2008) rate density [10 Cappellaro et al. (2005) Bazin et al. (2009) Dahlen et al. (2004) 0.1 0 0.2 0.4 0.6 0.8 1.0 Redshift z ~20-30% ~20-30% ~10-30% ~10-40% Smar et al (2009) Kochanek et al (2014) Horiuchi et al (2010) Gerke et al (2014) Elba XIV Horiuchi (Virginia Tech) 14 1. Red supergiant problem

Some stars don’t explode? Observaonally, the red supergiants with This is ~20% of massive stars.

mass 16 – 25 Msun are not exploding The mass range in queson is an island of high compactness à theorecally more

likely to form black holes.

Assuming all explode

With Mcut 16.5 Msun

Horiuchi et al (2014); see also Kochanek (2014)

Requires low crical ξ2.5 ~ 0.2 Smar (2015) à Needs tesng by 3D simulaons Elba XIV Horiuchi (Virginia Tech) 15 2. Black hole mass funcon

Compact object mass funcon:

There are hints of a dearth of compact black A crical compactness ξ2.5~0.2 predicts a holes just above the NS mass range black hole mass funcon with a cutoff

e.g., Kreidberg et al. (2012), Kizeltan et al. (2013) Lovegrove & Woosley 2013, Kochanek (2014) Elba XIV Horiuchi (Virginia Tech) 16 3. Cosmic core-collapse rate Birth rate of massive stars From many observaons

10 (hundreds) ] -3 Birthrate of massive stars Observed supernova rate Derived from observaons Mpc

-1 of luminous supernovae

yr (many recent updates) -4 Rate of bright collapse (Core-collapse rate) – 1 (supernova rate) = DIM or DARK collapse rate Li et al. (2010b) Cappellaro et al. (1999) Approximately 30 – 50 % Botticella et al. (2008) • Some of this can be due to rate density [10 Cappellaro et al. (2005) Bazin et al. (2009) collapse to black holes. Dahlen et al. (2004) • Other possibilies include 0.1 0 0.2 0.4 0.6 0.8 1.0 ONeMg collapse, dust Redshift z (especially from mass loss), Horiuchi et al (2011) fall back intense collapse,

Elba XIV Horiuchi (Virginia Tech) etc 17 Correcon due to dim supernovae

Dust exncon distribuon Large uncertainty from dust aenuaon à beer model raises CCSN rate 30-50%

Observed

model Two more (2002hh & 2009hd) at 3.7 & 4.1 Number of supernovae

Less ß Dust exncon à more Mala et al (2012)

à Failed collapse fracon reduced to 10-30% Dahlen et al, ApJ (2012) Elba XIV Horiuchi (Virginia Tech) 18 4. Searching for failed explosions: Survey about nothing

Survey About Nothing • Look for the disappearance of red- supergiants in nearby galaxies • Monitor 27 galaxies with the Large Binocular Telescope à ~106 red supergiants with luminosity > 104 Lsun à expect ~1 core collapse /yr à In 10 years, sensive to 20 – 30% failed fracon at 90%CL

Kochanek et al. (2008)

Gerke et al. (2015) Elba XIV Horiuchi (Virginia Tech) 19 SN2011dh deficit

V-band

R-band

Results so far: In 4 years running, • 3 luminous CC supernovae: SN2009dh, SN2011dh, SN2012 With the candidate • 1 Type Ia (SN2011fe) • 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc)

à Peak failed collapse rate 10 – 40% Note: the candidate’s mass esmate is 18–25 Msun (!) Gerke et al. (2015)

Elba XIV Horiuchi (Virginia Tech) 20 NEUTRINO PROBES

Elba XIV Horiuchi (Virginia Tech) 21 Modern neutrino detectors

MiniBooNE (800 ton LqSc) (15 kton LqSc) [RENO (~18 kton LqSc)] Super-Kamiokande (32 kton H2O) SNO+ (800 ton LqSc) EGADS (200 ton H2O + Gd) HALO (76 ton Pb) KamLAND (1 kton LqSc) ~ [DUNE (~34 kton LAr)] [Hyper-Kamiokande ( 0.6 Mton H2O)]

LVD (1 kton LqSc) Daya Bay (300 ton LqSc) Borexino (300 ton LqSc) [JUNO (~20 kton LqSc) ] [km3Net (Gton water)] IceCube (Gton Ice) [LENA (50 kton LqSc)]

Elba XIV Horiuchi (Virginia Tech) 22 Neutrino detecon: Cherenkov

Super-Kamiokande IceCube E > 10 GeV Eν > few MeV ν

ν

e lepton • Each OM has intrinsic noise of ~300 Hz • Supernova at 10 kpc yields ~200 (L/1052 erg/s) Hz hits per OM • Supernova appears as correlated noise in 5000 OMs e.g., Halzen et al (1995)

Elba XIV Horiuchi (Virginia Tech) 23 Distance scales and physics outcomes

Nν >> 1 : BURST Nν ~ 1 : MINI-BURST Nν << 1 : DIFFUSE

SN rate ~ 0.01 /yr SN rate ~ 0.5 /yr SN rate ~ 108 /yr

~kpc ~Mpc ~Gpc Adapted from Beacom (2012) Galacc burst Mini-bursts Diffuse signal Physics Explosion supernova variety Average emission, mul-populaons reach mechanism, with individual ID astronomy Required Basics are Next generaon Upcoming upgrades detector covered

Elba XIV Horiuchi (Virginia Tech) 24 Supernova neutrino detecon

High number stascs expected from a Galacc core collapse (at 10 kpc distance)

Mirizzi et al (2015) Elba XIV Horiuchi (Virginia Tech) 25 Observing the SASI mechanism

SASI signatures: SASI’s me variaons (~10-20 ms) in the neutrino luminosity and energy can be measured, if we have excellent stascs.

Tamborra et al (2013), see also Lund et al (2010, 2012), based on Hanke et al (2013)

Elba XIV Horiuchi (Virginia Tech) 26 Measuring the compactness

Events light curve at SK: The rao of events: See a clear dependence on the ξ, which is useful in light of systemac uncertaines. drives the accreon history Many choices of me bins for specific ξ 12 8 D

10

0-50ms 6 @SK

bins @SK /N 8 4 ms

1 2 ê 6 200-250ms

N 0 4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 events @ 2 8 n

N @HK

0-50ms 6 0 0.0 0.2 0.4 0.6 0.8 1.0 /N t s 4 2 200-250ms

N 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Compactness ξ1.75 ξ2.5 0.005 0.42 @ D

Elba XIV Horiuchi (Virginia Tech) 27 Distance scales and physics outcomes

Nν >> 1 : BURST Nν ~ 1 : MINI-BURST Nν << 1 : DIFFUSE

SN rate ~ 0.01 /yr SN rate ~ 0.5 /yr SN rate ~ 108 /yr

~kpc ~Mpc ~Gpc Adapted from Beacom (2012) Galacc burst Mini-bursts Diffuse signal Physics Explosion supernova variety Average emission, mul-populaons reach mechanism, with individual ID astronomy Required Basics are Next generaon Upcoming upgrades detector covered

Elba XIV Horiuchi (Virginia Tech) 28 Diffuse Supernova Neutrino Background

Observed positron Input 1: supernova neutrino spectrum (intensely studied, spectrum quanty of interest)

dN cdt dN e (E )=N (E ) R (z) (1 + z) ⌫ [E (1 + z)] dz dE e p ⌫ CCSN dz dE ⌫ e Z ⌫ See, e.g., reviews by Beacom (2010), Lunardini (2010)

Input 2: core-collapse rate (intensely studied by astronomers using photons, rapidly improving)

Input 3: neutrino detector capabilies (well understood for H2O) ⌫¯ + p e+ + n e ! Elba XIV Horiuchi (Virginia Tech) 29 Input 1: Time-integrated neutrino signal

Neutrino emission: Black hole cuts off the neutrino emission, but it necessarily goes through rapid mass accreon à ν emission is more luminous and hoer (EOS dependent)

Liebendoerfer et al 2004, Fischer et al 2009, Sumiyoshi et al 06, 07, 08, 09, Nakazato et al 2008, 2010, O’Connor & O 2011, …

Elba XIV Horiuchi (Virginia Tech) 30 Input 2: cosmic core-collapse rate Core-collapse rate From the birth rate of

10 massive stars ]

-3 Observed supernova rate Birthrate of massive stars Derived from observaons Mpc

-1 of luminous supernovae

yr (many recent updates) -4 Rate of bright collapse (Core-collapse rate) – 1 (supernova rate) = DIM or DARK collapse rate Li et al. (2010b) Cappellaro et al. (1999) Approximately 30 – 50 % Botticella et al. (2008) • Some of this can be due to rate density [10 Cappellaro et al. (2005) Bazin et al. (2009) collapse to black holes. Dahlen et al. (2004) • Other possibilies include 0.1 0 0.2 0.4 0.6 0.8 1.0 ONeMg collapse, dust Redshift z (especially from mass loss), Horiuchi et al (2011) fall back intense collapse,

Elba XIV Horiuchi (Virginia Tech) etc 31 Predicons Diffuse neutrino fluxes: Event spectra with uncertaines: Assuming 30% collapse to black holes

Black holes

Neutron stars à

Lunardini (2009); Lien et al (2010),Keehn & Lunardini (2010), Nakazato (2013), Yuksel & Kistler (2014) Event rate at SK (22.5 kton FV): Spectrum 18 MeV threshold [/yr] 4 MeV 0.4 +/- 0.1

4 MeV+BH < 1.8 Adapted from Horiuchi et al (2009) SN1987A 0.5 +/- 0.1

Elba XIV Horiuchi (Virginia Tech) 32 Searches and forecast

Background-limited: R&D towards a signal-limited regime Significant backgrounds at present: Use dissolved Gadolinium (Gd) for effecve neutron-tagging Beacom & Vagins (2004) ⌫¯ + p e+ + n e ! current with Gd Capture on Capture on Gd, protons, signal provides a coincidence lost signal à Opens an event limited search à Increases energy window

Spectrum 18 MeV 10 MeV threshold [/yr] threshold [/yr] 4 MeV 0.4 +/- 0.1 1.8+/- 0.5 4 MeV+BH < 1.8 < 4.5 Beacom 2010, from SK limits (Malek et al 2003, for update see Bays et al 2012) SN1987A 0.5 +/- 0.1 1.5 +/- 0.5 Elba XIV Horiuchi (Virginia Tech) 33 Summary

Take away messages:

1. Simulaons are exploding! Systemac simulaons are revealing that compactness is a useful parameter to characterize the diversity of core- collapse simulaons.

2. Observaonally, the fracon of collapse to black holes may be as high as ~ 30% of core collapse. This would explain: • The red supergiant problem • The black hole mass funcon • The supernova rate discrepancy • Recent results from Survey about Nothing

3. Neutrinos provide a valuable test, both via the next Galacc supernova, and via the diffuse supernova neutrino background. (Survey About Nothing will provide important informaon also)

Thank you!

Elba XIV Horiuchi (Virginia Tech) 34