A&A 582, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201526110 & c ESO 2015 Astrophysics r-process nucleosynthesis in the MHD+neutrino-heated collapsar jet K. Nakamura1, T. Kajino2,3,G.J.Mathews4,2,S.Sato2,, and S. Harikae2, 1 Waseda University, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo, Japan e-mail:
[email protected] 2 National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, 181-8588 Tokyo, Japan e-mail:
[email protected] 3 Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan 4 Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA e-mail:
[email protected] Received 17 March 2015 / Accepted 23 May 2015 ABSTRACT It has been proposed that the collapsar scenario for long-duration gamma ray bursts is a possible astrophysical site for r-process nucleosynthesis. Here we present r-process nucleosynthesis calculations based upon a model for a MHD+neutrino-heated collapsar jet. We utilize a relativistic magnetohydrodynamic model that includes ray-tracing neutrino transport to describe the development of the black hole accretion disk and the neutrino heating of the funnel region above the black hole. The late time evolution of the collapsar jet is then evolved using axisymmetric special relativistic hydrodynamics. We employ representative test particles to follow the trajectories in density, temperature, entropy, and electron fraction for material flowing from the accretion disk into the jet until they are several thousand km above the black hole.