
5th International Symposium on Neutrinos and Dark Matter in Nuclear Physics University of Jyvaskyla, Finland, June 1-5 2015 Supernova Neutrinos and Nucleosynthesis Taka KAJINO National Astronomical Observatory of Japan Department of Astronomy, The University of Tokyo Purpose Nuclear EOS & n-Oscillation What happens to neutrinos once they leave the supernova? Supernova Relic Neutrino (SRN) n-Mass Hierarchy & Cosmic Clock What happens as neutrinos flow through the supernova outer layers ? n–induced nucleosynthesis probes n- hierarchy and nn self-interactions. Origin of R-Process What happens in the innermost core and its atmosphere? Core-collapse SNe vs. binary neutron star mergers Two Astron. Relic SN- EOS, n- ProblemsG.J. Mathews, J. Hidaka, T. Kajino & J. Suzuki, ApJ 790(2014),115Oscill. ― SNR problem. K. Nakazato, E. Mochida, Y, Niino,n H. Suzuki, ApJ 804 (2015), 75 ― Metallicity Evol. Supernova Rate Red Super-Giant Problem Problem failed-SNe with BH ! Critical mass for MC f-SNe ? Horiuchi, Beacom et al., ApJ 738 (2011) 154. Smartt, S. J. 2009, ARA&A, 47, 63 Simultaneous Solution ? at BIRTH ! MC = 25M BH 50% missing? at DEATH ! 16.5 +/- 1.5 M SNR & RSG Problems vs. Initial Mass Function Cosmic Star Formation Rate Initial Mass 16.5M ← M = Function C 25M -2.35 f0(M) ∝ M Salpeter (1955) Simultaneous Solution What Signal ? Relic SN-n Hidaka, Kajino, Mathews, Sumiyoshi & Yoshida MC Smartt (2009) 2015, in preparation. 16.5 +/- 1.5 M Failed SNe (at z = 0) (at SR problem, solved ! SN Obs /R SN Th R Red-SG problem, solved ! 8 fSN M min/M fSN(failed SNe) Sumiyoshi, Yamada, & Suzuki ApJ 688 (2008)1176. Average Energy Tnx Tne Tne LS Shen Soft EoS Stiff EoS Luminosity Lne Lne Lnx Spectrum of Relic Supernova Neutrinos(RSNs) Totani et al. 1996, ApJ 460, 303; Lunadini 2009, PRL 102, 231101. Redshifted Expanding Universe SN Rate n-Spectra from Various SNe 101 No n-oscillation 100 10-1 10-2 Atmospheric-n 103 10-4 0 10 20 30 40 50 60 En (MeV) Theoretical n-Spectra for Various Supernovae Electron-capture SNe Normal CC-SNe Failed SNe Pair-n heated SNe (Faint Ne) (Neutron Star fromation) (Black Hole formation) (BH + Acc. Disk) 1.1 1.5s ONeMg SNe: Hudepohl, et al., PRL 104 (2010). CC-SNe:Yoshida, et al., ApJ 686 (2008), 448; Suzuki & Kajino, J. Phys. G40 (2013) 83101. fSN (failed SNe): Sumiyoshi, et al., ApJ 688 (2008) 1176. * Shen-EOS (stiff): Shen et al. Nucl. Phys. A637 (1998) 435. * LS-EOS (soft, K=180): Lattimer & Swesty, Nucl. Phys. A535 (1991) 331. GRBs: Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. E22 (2013) 1330022; Kajino, Mathews & Hayakawa, J. Phys. G41 (2014) 044007. Relic Supernova Neutrino(RSN) Spectrum Hyper-Kamiokande (Mega-ton), Gd-loaded Water Cherenkov Detector Hidaka, Kajino, Mathews, Sumiyoshi & Yoshida 2015, in preparation. Setting Mc = 16.5 M (critical mass for NS vs. BH formation) to solve SN Normal Hierarchy Rate Problem and RSG Problem simultaneously. RSNs could be a good probe to test EoS and Mass Hierarchy! Inverted Hierarchy failed SNe (Shen-EOS) failed SNe (Shen-EOS) failed SNe (LS-EOS) failed SNe (LS-EOS) n-Oscillation, SN-n and Nucleosynthesis8 p1 ne p2 ne 8 ne ne ne ne MSW Matter Effect: Through high-density resonance x p n p n 3 3 2 x 1 x at r ~ 10 g/cm electrons n-Collective Oscillation ne nmt ne Vacuum Oscillation nmt ne Si Layer Relic SN-n NS Nucleosynthesis R-process: n-process: ● Toshio Suzuki Heavy Nuclei 6,7Li, 9Be, 10,11B … ● Tac Hayakawa np-process: ● Tatsushi Shima 92Mo, 96Ru ? n-process 92Nb, 98Tc, 180Ta, 138La … ● M.-K. Cheoun Explo. Si-burn.: Fe-Co-Ni, Sterile-n : explosion 60Co, 55Mn, 51V … ● Grant Mathews n self-interaction (Collective Oscill.) Neutrino Sphere Duan, Fuller, Carlson & Qian, PRL 97 (2006), 241101. Fogli, Lisi, Marrone & Mirizzi, JCAP 12, (2007) 010. Proto Balantekin & Pehlivan, J. Phys. G34, (2007) 47. Neutron Star ● Yamac Pehlivan Quest for solving ● Baha Balantekin many-body Hamiltonian ! Single angle approx. (Inverted) Y. Pehlivan, A.B. Balantekin, & T. Kajino, Phys. Rev. D84 (2011), 065008; Phys. Rev. D90 (2014), 065011. Swapping ! Symmetries (i.e. BCS, spin lattice) Bethe ansatz → Invariance → Split Energy ES Es n-Oscillation, SN-n and Nucleosynthesis8 p1 ne p2 ne 8 ne ne ne ne MSW Matter Effect: Through high-density resonance x p n p n 3 3 2 x 1 x at r ~ 10 g/cm electrons n n-Collective Oscillation e nmt ne Vacuum Oscillation nmt ne Si Layer Relic SN-n NS R-process: n-process: Heavy Nuclei 6,7Li, 9Be, 10,11B … np-process: 92Mo, 96Ru ? n-process 92Nb, 98Tc, 180Ta, 138La … Explo. Si-burn.: Fe-Co-Ni, 60Co, 55Mn, 51V … Where is the astrophysical site and conditions for the r-process ? SN-explosion condition, suitable NSMs arrive in early Galaxy? for r-abundance pattern? Too late to merge 0.1Gy≤t≤103Gy? Universality Galactic chemo-dyn. Evol. Core-Collapse Supernovae(n-driven) Binary Neutron-Star Mergers n-driven Wind, 3D Hydro, Newtonian, 11.2 M SPH, Newtonian, n-Leakage scheme Takiwaki, Kotake, Suwa, ApJ 786 (2014), 83. Korobkin et al., MNRAS 426 (2012), 1940. ν Credit-NASA ν ν ν ν Honda, Aoki, + Kajino et al. (SUBARU/HDS Collab.), 2004, SUBARU Telescope HDS ApJS 152, 113; 2004, ApJ 607, 474. Metal-poor stars Large abundance dispersion at [Fe/H]<-2.5 is an evidence for INDIVIDUAL SN episode! UNIVERSALITY Single (or a few) SN episode(s) may exhibit the same r-process abundance 0 pattern. ”UIVERSALITY” [Ba/Fe] + AGB 0 solar - s SN II SN I + II [Ba/Eu] solar - r R-process elements from Type II SNe ! 0 [Fe/H] [Eu/Fe] [Fe/H] = log(NFe/NH) ― log(NFe/NH) Lack due to [Fe/H] obs. limit. 10 = time/10Gy [Fe/H] = -3 ・・・ -2 ・・・ -1 ・・・ 0 Early Universe [Fe/H] 10My 100My 1Gy 10Gy Core-Collapse Supernova: n-driven wind ● Shunji Nishimura G. Lorusso et al., (2015), PRL 114, 192501. Several numerical supernova simulations suggest; Ye > 0.5 However, see Roberts, Reddy & Shen(PR C86, 065803, 12): Ye < 0.5 in n-transport calculations by taking account of nucleonic potential plus Pauli-blocking effects. More studies of CCSNe! Otsuki, Tagoshi, Kajino and Wanajo, ApJ 533(2000),424; Wanajo, Kajino, Mathews and Otsuki, ApJ 554(2001),578. (n,g)⇔(g,n) Equilib. & Neutron-rich condition for successful r-process: Ye < 0.4 -1 - ne + n → p + e + ne + p → n + e T = 3.2 MeV < T = 4 MeV en = 3.15 Tn ne ne Magneto-hydrodynamic(MHD)Jet Supernova S. Nishimura, et al., ApJ , 642, 410 (2006) ; T. Takiwaki, K.Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012). Overproduction, SERIOUS observationally ! FRDM modelFRDM(finite-range drop- ETFSI model (Extended Thomas- let model; Moeller et al. 1995) Fermi + Strutinsky; Goriely 2003) Mass A ● Shunji Nishimura Mass→ Shell A quenching? Nucl. Phys. Uncertaities ? Underproduction Possible Solutions Other Site? PROBLEM ! Binary Neutron-Star Mergers? Binary Neutron Star Mergers 236U & others Theory vs. Exp. Fission Recycling could operate! Fission Fragment Mass Distribution M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008). Fission fragment mass A CC Supernovae Bimordial or Trimodal FFD: theory experiment Neutron Star Mergers Abundance Evolution of Neutron Star Merger Binary Neutron Star Merger Model : SPH simulation - Newtonian gravity, Neutrino Leakage scheme Korobkin et al., MNRAS 426 (2012), 1940. Later time Earlier time Fission Parent Fission Region A=290 Daughter A parent>290 A parent<290 Abundance Yield of Fission Fragment Yield Mass number Mass number A Solar System r-Process Abundance Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso, PRC (2015) n-Driven Wind Weak R-Process : S. Wanajo, ApJL, L22 (2013) SUM = 80%(n-SN weak-r) +15% (MHD Jet)+5%(NSM) Neutron Star Merger Magneto-Hydrodynam. Jet Supernova Relative Contributions of n-SNe : MHD Jets : NSMs from Galactic event rate observations ? Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso, submitted (2015) Ejected Mass [Msun] x Event Rate [/Galaxy/Century] 80% n-SN Weak-r = 7.4 x 10-4 x (1.9±1.1) a 15% SN MHD Jet = 0.6 x 10-2 x ((0.03±0.02) x (1.9±1.1)) b 5% NSM = (2±1) x 10-2 x (1-28)x10-3 c Observations a 1.9±1.1 Diehl, et al., Nature 439, 45 (2006). b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012). Obs. Estimate c (1-28) x 10-3 Kalogera, et al., ApJ 614, L137 (2004). Binary NS-Mergers have arrived too late in early Galaxy ? tc 13 Unrealistic choice of tc = 1-10 My 100 My 10 Gy 10 Tyr (10 y) = Life of 0.8 massive stars 0.6 0.4 0.2 Orbital eccentricity eccentricity Orbital 0.0 1 10 100 1000 Orbital period (hours) Argast, Samland, Thielemann, Qian, A&A 416 (2004), 997. Difficulty of Binary tc = 100 My Neutron Star Mergers Neutron Star Mergers (Theory) Extremely Too long time-delay Metal-Poor Stars for coalescence ! D. R. Lorimer, Living Rev. Rel. 11 (2008), 8 ; 100 My < tc < 1000 Gy Universality Sun Wanderman and Piran (2014) (obs.) arXiv: 1405.5878 ; tc ~ 4 Gy !? -4 -3 -2 -1 0 [Fe/H] Merging time scale tc is 1My 10My 100My 1Gy 10Gy cosmologically long ! Sneden, Cowan, Gallino, ARAA 46 (2008) 241. Fe/H t log ∝ HST-obs., Roederer et al., ApJ 747 (2012) L8. Fe/H 1010y = -3.1 Te -3.0 -2.1 -2.9 -2.2 Solar system UNIVERSALITY ! -3.0 Sr-Y-Zr Ba Eu Au Pb Th U Metal-poor halo stars ELEMENTAL Abundance Pattern Z-dependence) Universality in Metal-Poor Halo Stars 125,126,128,130Te ELEMENTAL Abundance Pattern (Z-dependence) Galactic Chemo-Dynamical Evolution of Hierarchical GalaxyDwarf Formation Galaxy Scenario from merging sub halos N-Body/SPH Simulation: SNe + NSM (tc=100My), GAS MIXING in star forming region is included.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages39 Page
-
File Size-