Using Satellite Imagery to Evaluate Precontact Aboriginal Foraging Habitats in the Australian Western Desert W

Total Page:16

File Type:pdf, Size:1020Kb

Using Satellite Imagery to Evaluate Precontact Aboriginal Foraging Habitats in the Australian Western Desert W www.nature.com/scientificreports OPEN Using satellite imagery to evaluate precontact Aboriginal foraging habitats in the Australian Western Desert W. Boone Law1*, Peter Hiscock2, Bertram Ostendorf1 & Megan Lewis1 Modern satellite imaging ofers radical new insights of the challenges and opportunities confronting traditional Aboriginal ecology and land use in Australia’s Western Desert. We model the likely dynamics of historic and precontact desert land use using Earth observation data to identify the distribution of suitable foraging habitats. Suitability was modelled for an ideal environmental scenario, based on satellite observations of maximal water abundance, vegetation greenness, and terrain ruggedness. Our model shows that the highest-ranked foraging habitats do not align with land systems or bioregions that have been used in previous reconstructions of Australian prehistory. We identify impoverished desert areas where unsuitable foraging conditions have likely persisted since early in the last glacial cycle, and in which occupation would always have been rare. These fndings lead us to reconsider past patterns of land use and the predicted archaeological signature of earlier desert peoples. Te ‘Western Desert’, as it is colloquially known, is one of the most arid and geographically remote regions of continental Australia. Understanding the dynamics of human ecology in this vast arid region is important to the investigation and interpretation of the continent’s Aboriginal archaeological record. Of Australia’s many desert areas, the Western Desert has been featured prominently in the development of many precontact human ecology models1–7. Te founding ‘Australian Desert Culture’ model1, created to explain human occupation of the Western Desert, was grounded in its use of the ethnographic record to characterise traditional land use practices, and continues to infuence research today. But modern research explores desert archaeology in diverse ways, using principles of biogeography, evolutionary biology and human behavioral ecology8–14. Tose models have enhanced our understanding of traditional forager subsistence and settlement practices, highlighting the complex nature of the Aboriginal land use. However, scale remains an issue in subsequent models, where broad, regional-level environmental characterizations have created low resolution understandings of resource availability and land use, thereby limiting their ability to measure changing land use practices over time and space. Australian researchers have increasingly employed spatial science methodologies to better portray ecological scenarios to interpret the archaeological past, although the ecological grain of such models has thus far been limited to coarse-scaled, continental-wide representations 13,15–18. Technological advances in spatial science and environmental remote sensing ofer a new level of sophistication to investigate past land use in a more spatially explicit way and at higher resolution than earlier models. With more than a quarter-century of Earth observa- tion imagery available in open access formats, it is easier than ever to access and process massive geospatial and remote sensing datasets into sophisticated models of human ecology. Our research takes advantage of these repositories, utilizing a number of freely available satellite image-derived products to investigate past Western Desert land use, including Geoscience Australia’s19 Water Observations from Space (WOfS), the United States Geological Survey’s20 Landsat 5 TM Normalized Diference Vegetation Index (NDVI) datacube, and the Japan Aerospace Exploration Agency’s21 Advanced Land Observing Satellite’s (ALOS) World 3D 30 m digital surface model. We use these remote sensing products to derive indicators of water accessibility, vegetation greenness, and terrain ruggedness. In combination, these variables are used to build a spatial ecological model that identifes suitable foraging habitats during times of maximum water abundance and above average vegetation health. Our 1School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia. 2Geoscience and Archaeology, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia. *email: [email protected] Scientifc Reports | (2021) 11:10755 | https://doi.org/10.1038/s41598-021-89642-1 1 Vol.:(0123456789) www.nature.com/scientificreports/ Figure 1. Location of the Western Desert in relation to continental Australia. Te bioregional boundaries of the Interim Biogeographic Regionalisation for Australia (IBRA)23 subregions are shown in relation to major land systems and desert regions. Te code keys to IBRA subregions are: CER01-Central Ranges (Mann-Musgrave), CER02-Central Ranges (Watarru), GAS02-Gascoyne (Carnegie), GID01-Gibson Desert (Lateritic), GID02- Gibson Desert (Dunefeld), GSD02-Great Sandy Desert (MacKay), GSD03-Great Sandy Desert (Ehernberg), GSD04-Great Sandy Desert (Amadeus), GSD05-Great Sandy Desert (Lake Bennett), GSD06-Great Sandy Desert (Lake Lewis), GVD01-Great Victoria Desert (Shield), GVD02-Great Victoria Desert (Central), GVD03-Great Victoria Desert (Maralinga), GVD04-Great Victoria Desert (Kintore), LSD01-Little Sandy Desert (Rudall), LSD02-Little Sandy Desert (Trainor), and NUL01-Nullarbor (Carlisle). Excavated rockshelter sites with long archaeological sequences (lime green) include: (1) Karnatukul (Serpent’s Glen), (2) Bushturkey-3, (3) Kaalpi, (4) Puntuntjarpa, (5) Parnkupirti, (6) Puritjarra, (7) Glen Tirsty, (8) Tjungkupu, and (9) Kulpi Mara. Map created in ESRI ArcGIS Desktop 10.5.1 (https:// deskt op. arcgis. com). Vector layers adapted from Creative Commons datasets (GEODATA Topo 250 K Series 3, Atlas of Australian Soils, and IBRA Version 7 Subregions) available at https:// data. gov. au. Montane upland layer based on terrain ruggedness raster (see “Methods” section). suitability model has implications for how we think about and test for land use histories, which we contextualize with previous ideas of Aboriginal subsistence and settlement in the Western Desert. Background and rationale Australia’s ‘Western Desert’ actually encompasses a diverse array of arid landscapes that are ofen discussed at diferent spatial scales. At a very generalised level, its prominent geographical areas include the Great Sandy Desert, Little Sandy Desert, Great Victoria Desert, Gibson Desert and the western portions of the Tanami Desert and the Central Ranges (Fig. 1). Alternatively, for analytical purposes, the Western Desert is also divided into 17 subregions under a nationally agreed upon framework known as the Interim Biogeographic Regionalisation for Australia (IBRA)23 (Fig. 1). Te boundaries of the IBRA subregions are spatially delineated using a combination of climatic, geological, landform, native vegetation and species information, and they are commonly used by the scientifc community to summarise and broadly investigate inter-regional biodiversity and ecosystem dynamics across the arid zone10,18,24–26. Te greater Western Desert, as defned here, spans nearly 1.1 million km 2, representing roughly 14.0% of the Australian land mass. Rainfall is seasonally unreliable, with median annual rainfall around 250 mm27. Ambient Scientifc Reports | (2021) 11:10755 | https://doi.org/10.1038/s41598-021-89642-1 2 Vol:.(1234567890) www.nature.com/scientificreports/ temperatures exceeding 35 °C occur more than 114 days annually and evapotranspiration is very high. Te West- ern Desert is riverless, lacking coordinated drainage or permanent freshwater lakes 26. Reliable water is largely confned to montane uplands or rocky outcrops, but there are exceptions. Springs, soaks and subterranean cham- bers are known to occur in palaeodrainage networks hundreds of kilometers from any rocky substrate28. In all other landforms, the availability of surface water is short-lived, ofen in playas29, and entirely contingent on rain. Tese environmental conditions presented severe challenges for human survival, and our concern is the implications of geographical variation in resource availability in those diverse desert environments for historic foragers. Was it possible for foragers to permanently occupy all desert areas or to inhabit them through all time periods4,9,30? For more than 50 years anthropological and ethnoarchaeological studies have characterized the nature of economy and social life in historical desert societies as small, nomadic family groups of 10–30 individuals who foraged opportunistically across large territories of land, moving and targeting resources fexibly in response to resource availability1. Groups occasionally gathered in larger congregations, but for short periods and only during times of increased water abundance1. Archaeologists typically presume the past total human population in the Western Desert had remained comparatively low throughout time, but increasingly some argue that population increased substantially in the past 2000 years17. It was initially argued that low population density and oppor- tunistic plant-based economic strategies are so essential in these deserts that they were always present in past behavioral systems, prompting the hypothesis that desert societies must have been culturally conservative and unable to change socially or economically over time1. However that conclusion is not supported by the serial changes observed in the archaeological record and models of desert conservatism are considered refuted 14,31,32. A more plausible hypothesis is that past behavioral
Recommended publications
  • Australia: State of the Environment 1996: Chapter 4
    Chapter 4 . Biodiversity ‘Still Flying’ from the painting of a Wandering Albatross by Richard Prepared by Weatherly. Denis Saunders (Chair), CSIRO Division of Wildlife and Ecology Andrew Beattie, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Susannah Eliott (Research Assistant/Science Writer), Centre for Science Communication, University of Technology, Sydney Marilyn Fox, School of Geography, University of New South Wales Burke Hill, CSIRO Division of Fisheries Bob Pressey, New South Wales National Parks and Wildlife Service Duncan Veal, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Jackie Venning, State of Environment Reporting, South Australian Department of Environment and Natural Resources Mathew Maliel (State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (Facilitator) Charlie Zammit (former State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (former Facilitator) 4-1 . Australia: State of the Environment 1996 . Contents Introduction. 4-4 Pressure . 4-7 Human populations . 4-9 Urban development . 4-9 Tourism and recreation . 4-9 Harvesting resources and land use. 4-10 Fisheries . 4-10 Forestry . 4-11 Pastoralism. 4-12 Agriculture . 4-12 Introduced species . 4-16 Vertebrates . 4-16 Invertebrates. 4-17 Plants. 4-18 Micro-organisms. 4-20 Native species out of place . 4-20 Pollution . 4-21 Mining . 4-22 Climate change . 4-22 State . 4-23 The state of ecosystem diversity . 4-23 Biogeographic regionalisations for Australia . 4-23 Ecosystem diversity. 4-26 The state of species diversity. 4-30 Number and distribution of species . 4-31 Status of species .
    [Show full text]
  • Dusky Hopping Mouse
    Threatened Species of the Northern Territory DUSKY HOPPING-MOUSE Notomys fuscus Conservation status Australia: Vulnerable Northern Territory: Endangered Photo: P. Canty Description as Ooldea in South Australia and east to the Victoria/New South Wales borders. The dusky hopping-mouse is characterized by its strong incisor teeth, long tail, large ears, The species has not been recorded in the dark eyes, and extremely lengthened and Northern Territory since 1939 when it was narrow hind feet, which have only four pads collected in sand dunes on Maryvale Station on the sole. The head-body length is 91-177 and on Andado Station. An earlier record is mm, tail length is 125-225 mm, and body from Charlotte Waters. weight is about 20-50 g. Coloration of the Conservation reserves where reported: upper parts varies from pale sandy brown to None. yellowish brown to ashy brown or greyish. The underparts of dusky hopping-mice are white. The fur is fine, close and soft. Long hairs near the tip of the tail give the effect of a brush. The dusky hopping-mouse has a well- developed glandular area on the underside of its neck or chest. Females have four nipples. Distribution The current distribution of the dusky hopping-mouse appears to be restricted to the eastern Lake Eyre Basin within the Known locations of the dusky hopping-mouse Simpson-Strzelecki Dunefields bioregion in (ο = pre 1970). South Australia and Queensland. An intensive survey in the 1990s located populations at Ecology eight locations in the Strzelecki Desert and adjacent Cobbler Sandhills (South Australia) The dusky hopping-mouse occupies a variety and in south-west Queensland (Moseby et al.
    [Show full text]
  • Little Sandy Desert 1 (LSD1 – Rudall Subregion)
    Little Sand Desert 1 Little Sandy Desert 1 (LSD1 – Rudall subregion) PETER KENDRICK NOVEMBER 2001 Subregional description and biodiversity across the desert and into a major salt lake within the Little Sandy Desert (the other is Savory Creek). values Only the upper half of the course of the Rudall River is within LSD1. • Description and area Small permanent rockhole wetlands associated with ranges and uplands. Locally significant water Sparse shrub-steppe over Triodia basedowii on stony hills, sources, with high biological and cultural with River Gum communities and bunch grasslands on significance. • alluvial deposits in and associated with ranges. The Small artificial surface water sources constructed climate is Arid with summer rainfall. The Rudall along the Canning Stock Route (far eastern part of Complex, Throssell Group and Lamil Group of the LSD1). Many in disrepair, but there is an active Patterson Orogen. Proterozoic hill country of Throssell, program of refurbishment underway, and many are Mount Sears, Broadhurst and Harbutt Ranges. Includes open again. Sometimes a locally significant source of headwaters and course of Rudall River. Extensive areas of water. tussock grass are associated with footslopes. River Gum communities along drainage. Extensive Triodia Refugia: • hummock grasslands on hills and surrounding plains. The The only refuge listed by Morton et al. (1995) area of the subregion is 1, 078, 070 ha. within LSD1 is the Rudall River. They note that it may provide a seasonal refuge to wildlife. Dominant land use • The hills of the McKay, Harbutt, Fingoon and Broadhurst Ranges present some areas that are protected from fire. Dominant land uses in the subregion are Conservation (xiii), Unallocated Crown land (xi), (x), Mining leases High Species and Ecosystem Diversity: (vii), and Urban (i) (Parnngurr Aboriginal Community There is a high number of arid zone reptiles, particularly near Cotton Creek in Rudall River National Park) (see skink lizards (genera Ctenotus and Lerista).
    [Show full text]
  • Lenape Valley Regional High School THIS ASSIGNMENT WILL BE DUE in FULL AP World History Summer Assignment 2015 by FRIDAY, SEPTEMBER 13TH, 2019
    Lenape Valley Regional High School THIS ASSIGNMENT WILL BE DUE IN FULL AP World History Summer Assignment 2015 BY FRIDAY, SEPTEMBER 13TH, 2019. Mr. Peter J. De Kleine, MA LAC EXTENUATING CIRCUMSTANCES WILL BE Department of Social Studies DISCUSSED INDIVIDUALLY. [email protected] Before anything else – Get a 5 Inch 3 Ring Binder for your materials. You will need it. ​ ​ ​ ​ Almost 14 billion years ago, as we know it, history began. From nothingness began a journey of creativity and complexity that would lead us to today. As human beings we are (at least we should be) continually seeking answers to the universe in which we are embedded. Some people focus on specific details, others focus on the ideas, but it can be argued that those who study history focus on the entire story of this journey. This course will test your ability to think, reason, and respond at a much higher level than CP or Advanced Courses. A great majority of this course is designed to prepare you for writing analytically so you may tackle the AP World History Exam in May of 2020. That being said, one might ask, “Why do we have to do a summer assignment?” I will be honest; I used to ask the same question and reason that it was my summer to do with as I wanted. Simply put, Lenape Valley Regional High School begins school toward the end of August, most school systems in the United States begin their school year early to mid-August. However, the AP Exam is on the same day for all students across the United States.
    [Show full text]
  • Phylogenetic Structure of Vertebrate Communities Across the Australian
    Journal of Biogeography (J. Biogeogr.) (2013) 40, 1059–1070 ORIGINAL Phylogenetic structure of vertebrate ARTICLE communities across the Australian arid zone Hayley C. Lanier*, Danielle L. Edwards and L. Lacey Knowles Department of Ecology and Evolutionary ABSTRACT Biology, Museum of Zoology, University of Aim To understand the relative importance of ecological and historical factors Michigan, Ann Arbor, MI 48109-1079, USA in structuring terrestrial vertebrate assemblages across the Australian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi-arid Australia across 37 biogeographical regions. Measures of within-line- age community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical fac- tors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding-window approach confirm the generality of pro- cesses structuring the assemblages of the Australian arid zone at different spa- tial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the Australian arid zone – they exhibit markedly different community structure at the regio- nal and local levels. Neither current climatic factors nor historical habitat sta- bility resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage per- sistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure.
    [Show full text]
  • Strategic Proposal SUPPLEMENTARY REPORT PUBLIC ENVIRONMENTAL REVIEW STRATEGIC PROPOSAL
    BHP Billiton Iron Ore Pilbara Public Environmental Review Strategic Proposal SUPPLEMENTARY REPORT PUBLIC ENVIRONMENTAL REVIEW STRATEGIC PROPOSAL Document Control ACTION NAME POSITION DATE Prepared by: F. Hill Faskel Document Manager 21.09.2016 Team Leader Reviewed by: B. Skarratt 27.09.2016 Strategic Environmental Assessment Manager Environment, Analysis and Endorsed by: R. Thorpe 29.09.2016 Improvement Head of Environment, Analysis and Approved by: G. Price 30.09.2016 Improvement Revised by: F. Hill Faskel Document Manager 21.12.2016 DISCLAIMER This Supplementary Report has been prepared for submission to the Western Australian Environmental Protection Authority in response to public comments received during the review period of the Pilbara Public Environmental Review Strategic Proposal (PERSP). This Supplementary Report is to support the information contained in the PERSP for the purpose of the Minister for Environment making a determination regarding whether to approve BHP Billiton Iron Ore’s Proposal under the Western Australian Environmental Protection Act 1986. This Supplementary Report and the PERSP have been developed for this purpose only, and no one other than the Environmental Protection Authority or the Minister should rely on the information contained in these documents to make any decision. In preparing the Supplementary Report and PERSP, BHP Billiton Iron Ore has relied on information provided by specialist consultants, government agencies and other third parties available during preparation. The Supplementary Report and
    [Show full text]
  • Arsbc-2008-Williams2 Paper.Pdf
    BIOGEOGRAPHY AND BIODIVERSITY OF BIOLOGICAL SOIL CRUSTS ACROSS QUEENSLAND Wendy J. Williams1, Burkhard Büdel2, *Colin Driscoll3 1The University of Queensland, Gatton, Queensland, 4343, Australia; 2Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany 3The University of Newcastle, NSW, 2308, Australia Email: [email protected] ABSTRACT Recent field research has established that biological soil crust communities (cyanobacteria, lichens, liverworts and mosses) are widespread across the rangelands of Queensland. Our survey has covered many national parks and reserves or private properties where necessary, to take in changes in rainfall gradients, vegetation communities and soils. We document for the first time, well-established and extensive cyanobacteria-dominated soil crusts occurring throughout much of the gulf-savannah. An ecologically important biological crust system was found across a fragile dune and flood plain near Skull Hole, Bladensburg NP. Other noteworthy biological crusts with significant biodiversity and cover were found in the jump-ups Diamantina NP; Spinifex ridges, Minerva Hills NP; Grey Range (west of Thargomindah); Sturt Stony Desert (Arrabury region); Stony plains (Coorabulka, Windorah Rd) and Arcadia Valley (Old Towrie). There were considerable and diverse cyanobacteria-dominated soil crusts found south-east of Cunnamulla (Glencoban), Currawinya NP, Bindegolly NP, Boodjamulla NP (Lawn Hill Gorge and Riversleigh sections), sand dunes (various sites, far western QLD) and in the estuarine sand-flats around Karumba. Across western QLD several mesas were surveyed. There were also good representations of hypolithic (cyanobacteria - under quartz, Boulia-Djarra Rd), epilithic (cyanobacteria and lichens) and endolithic (cyanobacteria) communities on various granite or sandstone rocky outcrops. Early results clearly show these biogenic soil crusts are unique in their biodiversity, structure and function.
    [Show full text]
  • Simpson-Strzelecki Dunefields the Simpson-Strzelecki Dunefields Bioregion
    21 CHAPTER 2 Simpson-Strzelecki Dunefields The Simpson-Strzelecki Dunefields Bioregion 1. Location 2. Climate At a total area of 29,722,724 ha, the Simpson-Strzelecki Dunefields Bioregion The Simpson-Strzelecki Dunefields Bioregion is very arid and has extends from the southeast of the Northern Territory, through the northeast unpredictable rainfall, which generally averages from 150-200 mm per year of SA, with small areas in both Qld and NSW. The far northeast corner of NSW (Morgan and Terrey 1992). It is one of four bioregions, all in the far northwest is occupied by the bioregion with an area of 2,116,980 ha, which constitutes of the state, that are dominated by a hot, persistently dry desert climate 7.12% of the entire bioregion and covers 2.65% of the state. (Stern et al. 2000). In NSW the bioregion is bordered by the Channel Country Bioregion in the north and by the Broken Hill Complex and Mulga Lands bioregions in the east 3. Topography and south. The Simpson-Strzelecki Dunefields are part of the Australian continental There are no townships in the bioregion, although popular tourist spots dunefields, which consist of a huge anti-clockwise whorl of linear dunes in include Camerons Corner at the junction between SA, Qld and NSW, as well central Australia. Most of the dunefield lies in the Lake Eyre Basin and the as the nearby Fort Grey (at Lake Pinaroo), where Charles Sturt is reported to edge of the region extends into the NSW corner country. The region is have built a defence against local Aborigines (NSW NPWS 1991).
    [Show full text]
  • Lake Disappointment Potash Project
    Lake Disappointment Potash Project Hydrogeological Assessment of the Impact of Process Water Abstraction from the Northern Bore Field An H2 Level Assessment for 2 GL/year with a Numerical Model Prepared by: Strategic Water Management Prepared For: Reward Minerals Ltd June 2018 Rookie Solutions Pty Ltd Trading As: Strategic Water Management ACN 605 020 255 ABN 81 605 020 255 79 Wellington Street, Mosman Park, Western Australia 6012 Telephone: 0402 893 976 E-mail: [email protected] No warranty or guarantee, whether expressed or implied, is made with respect to the data findings, observations and conclusions contained in this report. The entire report was provided in digital form with the original bound copy. Use of the digital file is entirely at the risk of the user and no liability is accepted for damage caused by use of the digital file. The Client has unlimited access to the information in this report but some of the data is the property of Strategic Water Management or is under copyright licence agreement so the report may not be provided to a third party or cited without written permission. Strategic Water Management accepts no liability or responsibility whatsoever for and in the respect of any use or reliance on this report by any third party. Document Status Rev Author Reviewed By Approved for Issue No. Name Signature Date 0 R. Kinnell R. Nixon R Kinnell 27/09/2017 1 R. Kinnell R. Nixon R Kinnell 15/06/2018 Table of Contents Introduction 1 Location 2 Existing Groundwater Use 4 Geography and Drainage 6 Climate and
    [Show full text]
  • The Vegetation of the Western Australian Deserts
    ©Reinhold-Tüxen-Gesellschaft (http://www.reinhold-tuexen-gesellschaft.de/) Ber. d. Reinh.-Tüxen-Ges. 18, 219-228. Hannover 2006 The Vegetation of the Western Australian Deserts - Erika and Sandro Pignatti, Rom - Abstract The internal area of W. Australia has arid climate and conditions for plant growth are particularly difficult. The surface of this huge, almost uninhabited territory consists of four landscape systems: the Great Sandy Desert, the Little Sandy Desert, the Great Victoria Desert, the Gibson Desert. The four deserts extend between 21-26° of south- ern latitude, linking to the central Australian deserts and the Nullarbor Plain in the South. Meteorological stations are only in settlements of the surrounding semi-desert areas (Wiluna, Meekatharra, Cue, Warburton), and all show around 200-250 mm year- ly rainfall; in the centre of the deserts rainfall is still much lower, and indicated as “erratic and unreliable”; some areas may lack rain for several years. Despite of the par- ticularly severe ecological conditions, most of the surface is covered by vegetation (at least a discontinuous one) and during expeditions in 2001 and 2002 over 700 species were collected and more than 350 phytosociological relevés were carried out.Two main habitat types can be recognized: Mulga – scattered growth of treelets (Acacia aneura, generally about 3-4 m height), with open understorey (Senna, Eremophila, Solanum) and herbs usually covering less than 20 % of the surface; in the Gibson Desert mulga occurs mainly on hard rock sub- strate (granite, laterite). Because of the discontinuous plant cover, fire can spread only over limited areas. Spinifex – Quite a compact cover of perennial grasses (several species of Triodia, with sharply pointed leaves in dense tussocks 3-5 dm high, panicles up to 1 m and high- er) in monospecific populations covering 60-80 % of the surface; in the sandy deserts, on siliceous sand.
    [Show full text]
  • BIODIVERSITY Native Vegetation
    BIODIVERSITY Native Vegetation Trends • Vegetation Extent: STABLE • Vegetation Condition: UNKNOWN OVERALL but IMPROVED slightly for Kingoonya District in the Pastoral region ‘Lose no species’ is a statement of • Area of land under Protected Status: aspiration. Species decline and become INCREASED 1% since 2003, but slowing extinct naturally. This aspiration reflects compared to last SoE Report the foresight, mindset and commitment needed by all South Australians if we are • Indigenous Revegetation activity: to prevent further loss of our known native DECREASING species due to human impacts, and if we are to conserve our biodiversity for future generations. Goals T3.1 Lose no species: lose no known native Native Vegetation species as a result of human impacts. and a sustainable South Australian Strategic Plan 2007 South Australia T3.2 Land biodiversity: by 2010 have five To achieve a sustainable future for well-established biodiversity corridors South Australia one of the key targets aimed at maximising ecological outcomes for sustainability in the South Australian particularly in the face of climate change. Strategic Plan is to Lose No Species. Native vegetation is an integral South Australian Strategic Plan 2007 component of our natural environment. 162 STATE OF THE ENVIRONMENT REPORT 2008 Native Vegetation As indigenous species provide habitat the importance of native vegetation in for animals native vegetation is maintaining a sustainable environment fundamental to sustainability. for humans. The economic value of these ecosystem services is identified Natural landscapes and the native as pertinent to ensure that their value is vegetation they contain are important included in economic considerations. components of the Australian identity.
    [Show full text]
  • Little Sandy Desert
    Biological survey of the south-western Little Sandy Desert NATIONAL RESERVE SYSTEM PROJECT N706 FINAL REPORT – JUNE 2002 EDITED BY STEPHEN VAN LEEUWEN SCIENCE DIVISION DEPARTMENT OF CONSERVATION AND LAND MANAGEMENT Biological survey of the south-western Little Sandy Desert NATIONAL RESERVE SYSTEM PROJECT N706 FINAL REPORT – JUNE 2002 EDITED BY STEPHEN VAN LEEUWEN SCIENCE DIVISION DEPARTMENT OF CONSERVATION AND LAND MANAGEMENT Research and the collation of information presented in this report was undertaken with funding provided by the Biodiversity Group of Environment Australia. The project was undertaken for the National Reserves System Program (Project N706). The views and opinions expressed in this report are those of the author and do not reflect those of the Commonwealth Government, the Minister for the Environment and Heritage or the Director of National Parks. The report may be cited as Biological survey of the south-western Little Sandy Desert.. Copies of this report may be borrowed from the library: Parks Australia Environment Australia GPO Box 787 CANBERRA ACT 2601 AUSTRALIA or Dr Stephen van Leeuwen Science and Information Division Conservation and Land Management PO Box 835 KARRATHA WA 6714 AUSTRALIA Biological Survey of the south-western Little Sandy Desert NRS Project N706 Final Report – June 2002 TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................................................................... iii EXECUTIVE SUMMARY .......................................................................................................................................
    [Show full text]