Chapter 5: Human Health

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5: Human Health Chapter 5: Human Health A variety of human health concerns have been raised in relation to review of the experimental literature, which has grown endocrine disruptors. Attention has focused on health end points exponentially in the last decade. However, it is only by integrated considered to be potentially at risk because either their development consideration of the background endocrinology, the human data, or their later functioning in adult life is known or thought to be and the animal findings that the strength of the endocrine influenced by exposure to chemicals with endocrine activity. disruptor hypothesis can be evaluated. In this chapter, four main areas are reviewed: reproduction, neurobehavior, immune function, and cancer. The order of the 5.1 Reproduction chapter sections reflects the continuum of life from conception 5.1.1 Introduction through adult life. Because sex hormones and thyroid hormones are major determinants of development and function of the The possibility that environmental exposure to chemicals might reproductive, central nervous, and immune systems, much of the affect human reproduction is not new. However, the hypothesis that experimental research to date has focused on the effects of EDCs on environmental chemicals acting as EDCs could be causative agents these key hormone systems and their target tissues, and possible links of changes in population-based, reproductive health trends is to human health effects. Endocrine-mediated mechanisms are well relatively recent. Changes occurring in various human reproductive established for certain human cancers, and these are also addressed. health statistics, particularly changes in temporal and geographical Although a few examples in this chapter clearly demonstrate trends, play a key role in the debate about possible effects of adverse effects in humans after high exposures to environmental exposure to EDCs. Although the main focus to date has been on chemicals (such as poisoning incidents), the data are much less clear male reproductive health (Toppari et al., 1996), this review covers for lower levels of exposure, either to single chemicals or to mixtures both male and female reproductive function. with potentially similar actions. It is these lower levels of exposure Much of the interest in the male reproductive system has that raise the most important public health questions, because even stemmed from an hypothesis proposed by Sharpe and Skakkebaek small shifts in population distributions of adverse health outcomes, (1993) that agents that interfere with normal development of the such as infertility or lowered IQ, could potentially have considerable reproductive system via an endocrine mechanism could plausibly be impact on the overall health of large populations. The inherent related to increases noted in human male reproductive disorders over problems in comparing human, laboratory, and epidemiological a number of years. In particular, a link was made between studies conducted at different times and locations and under developmental events that could result in decreased sperm different conditions continue to affect our ability to draw firm count/quality and increased incidences of testicular cancer, testicular conclusions about the existence of any global disease trends, and the maldescent (cryptorchidism), and male reproductive tract lack of adequate exposure data severely hampers the exploration of malformations, such as hypospadias. These could be expressions of hypotheses regarding possible causes of any identified trends. one underlying entity, the testicular dysgenesis syndrome Similarly, the lack of exposure data during critical periods of (Skakkebaek et al., 2001), which could result from disruption of development that influence later functioning in life make it difficult gonadal development during fetal life. Although the evidence linking to draw causative associations between exposure and effect. such effects to human exposure to chemicals is very weak or Hence, this chapter not only explores the available human nonexistent, treatment of experimental animals with certain health data but also draws on relevant data from experimental chemicals during critical windows of development of the male studies in laboratory animals where they support or cast doubt on reproductive system can result in deficits of the type proposed by the the biological plausibility of an adverse effect on human health hypothesis (Chapter 3, section 3.12). The one major exception is the from EDCs. This chapter is not intended to be a comprehensive production of testicular cancer (section 5.4.4). Seminoma, the major List of Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid GR Glucocorticoid receptor PCOS Polycystic ovary syndrome AhR Aryl hydrocarbon receptor HCB Hexachlorobenzene PCDFs Polychlorinated dibenzofurans AR Androgen receptor HPOA Hypothalamic preoptic area PHAHs Polyhalogenated aromatic hydrocarbons CI Confidence interval HRT Hormone replacement therapy PND Postnatal day CIS Carcinoma in situ IARC International Agency for Research on Cancer RACB Reproductive assessment through d day Ig Immunoglobulin continuous breeding DBCP Dibromodichloropropane IPCS International Programme on Chemical Safety T3 Triiodothyronine DDE Dichlorodiphenyl dichloroethylene LA Los Angeles T4 Thyroxine DES Diethylstilbestrol LH Luteinizing hormone TCDD 2,3,7,8-Tetrachlorodibenzyl-p-dioxin DDT Dichlorodiphenyl trichloroethane LOAEL Lowest observed adverse effect level TEQs Toxic equivalent quotients DHT Dihydrotestosterone MRC Medical Research Council TGF Tumor growth factor DTH Delayed-type hypersensitivity NOAEL No observed adverse effect level TPOs Thyroid peroxidase inhibitors E2 17β-Estradiol NYC New York City TSH Thyroid-stimulating hormone EDCs Endocrine-disrupting chemicals OECD Organisation for Economic Co-operation USA United States of America EGCG (–)-Epigallocatechin gallate and Development US EPA United States Environmental EGF Epidermal growth factor OR Odds ratio Protection Agency ER Estrogen receptor (α and β isoforms) PBBs Polybrominated biphenyls US FDA United States Food and Drug FSH Follicle-stimulating hormone PCBs Polychlorinated biphenyls Administration GD Gestational day PCDDs Polychlorinated dibenzodioxins wt weight - 51 - IPCS GLOBAL ASSESSMENT OF EDCS form of human testicular cancer, is extremely rare in laboratory value of this limit. From studies in couples attempting to conceive, animals, and until recently, no experimental model existed for its it has been found that the fertility potential of men decreased when production (section 5.4.4.2). However, some chemicals have been the sperm concentration was under 40 × 106/ml (Bonde et al., shown to produce interstitial (Leydig) cell tumors, particularly in 1998). A similar figure of 48 × 106/ml has also been recently rodents, that have been related to disturbances in normal endocrine reported (Guzick et al., 2001). control of male reproductive function. Other sperm characteristics, such as the percentage of motile Changing trends in female reproductive health have been forms or the incidence and the type of morphological much less studied than those in males. However, female abnormalities, seem to be more directly related to male fertility reproductive development is also susceptible to endocrine potential. Recent data that attempt to define a “normal” semen interference (Chapter 3), and effects on female reproductive tissues evaluation indicate, for example, that sperm morphology is a better and pregnancy outcomes may be of value as indicators of discriminator between fertile and infertile men than is sperm environmental influences. A number of aspects of female concentration (Guzick et al., 2001). Sperm morphology and reproductive health are discussed below, and breast cancer is motility could also be useful markers of toxic damage even in the discussed in section 5.4.2. absence of any effect on fertility. The fertilizing ability of The following sections summarize the available literature on spermatozoa is a complex phenomenon involving many molecular adverse outcomes in human reproductive health that have either and cellular events. Some of them are essential, such as the kinetic been proposed to be due to exposure to endocrine disruptors, or for function allowing the sperm to reach the oocyte, or capacitation which an endocrine mechanism is plausible or has been and the acrosome reaction necessary for the interaction with the demonstrated. A number of examples of chemical influences on zona pellucida and the fusion with the oocyte plasma membrane. human reproduction are cited, but it should be noted that evidence The nuclear composition and DNA integrity are also important that these are clearly linked to endocrine-mediated effects is lacking. factors for normal embryo development. Sophisticated biological Emphasis has been put on the plausibility of the endocrine disruptor tests have been developed in recent years to evaluate various sperm hypothesis in relation to each end point considered and on causality. functions, but no single test can ideally measure the fertility Although the focus is on the human literature, experimental animal potential of a man. data have been included to explore plausibility issues and potential In practice, if the sperm count is used to compare fertility mechanistic pathways involving endocrine disruption. potential of different populations at different times or in different places, it may be more appropriate to analyze the distribution of 5.1.2 Sperm Quality and Testis
Recommended publications
  • Establishing Sexual Dimorphism in Humans
    CORE Metadata, citation and similar papers at core.ac.uk Coll. Antropol. 30 (2006) 3: 653–658 Review Establishing Sexual Dimorphism in Humans Roxani Angelopoulou, Giagkos Lavranos and Panagiota Manolakou Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece ABSTRACT Sexual dimorphism, i.e. the distinct recognition of only two sexes per species, is the phenotypic expression of a multi- stage procedure at chromosomal, gonadal, hormonal and behavioral level. Chromosomal – genetic sexual dimorphism refers to the presence of two identical (XX) or two different (XY) gonosomes in females and males, respectively. This is due to the distinct content of the X and Y-chromosomes in both genes and regulatory sequences, SRY being the key regulator. Hormones (AMH, testosterone, Insl3) secreted by the foetal testis (gonadal sexual dimorphism), impede Müller duct de- velopment, masculinize Wolff duct derivatives and are involved in testicular descent (hormonal sexual dimorphism). Steroid hormone receptors detected in the nervous system, link androgens with behavioral sexual dimorphism. Further- more, sex chromosome genes directly affect brain sexual dimorphism and this may precede gonadal differentiation. Key words: SRY, Insl3, testis differentiation, gonads, androgens, AMH, Müller / Wolff ducts, aromatase, brain, be- havioral sex Introduction Sex is a set model of anatomy and behavior, character- latter referring to the two identical gonosomes in each ized by the ability to contribute to the process of repro- diploid cell. duction. Although the latter is possible in the absence of sex or in its multiple presences, the most typical pattern The basis of sexual dimorphism in mammals derives and the one corresponding to humans is that of sexual di- from the evolution of the sex chromosomes2.
    [Show full text]
  • Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using the LUMI-CELL ER Bioassay
    DEVELOPMENTAL AND REPRODUCTIVE TOXICITY Detection of Estrogen Receptor Endocrine Disruptor Potency of Commonly Used Organochlorine Pesticides Using The LUMI-CELL ER Bioassay John D. Gordon1, Andrew C: Chu1, Michael D. Chu2, Michael S. Denison3, George C. Clark1 1Xenobiotic Detection Systems, Inc., 1601 E. Geer St., Suite S, Durham, NC 27704, USA 2Alta Analytical Perspectives, 2714 Exchange Drive, Wilmington, NC 28405, USA 3Dept. of Environmental Toxicology, Meyer Hall, Univ. of California, Davis; Davis, CA 95616 USA Introduction Organochlorine pesticides are found in many ecosystems worldwide as result of agricultural and industrial activities and exist as complex mixtures. The use of these organochlorine pesticides has resulted in the contamination of lakes and streams, and eventually the animal and human food chain. Many of these pesticides, such as pp ’-DDT, pp ’-DDE, Kepone, Vinclozolin, and Methoxychlor (a substitute for the banned DDT), have been described as putative estrogenic endocrine disruptors, and act by mimicking endogenous estrogen 1-3 . Estrogenic compounds can have a significant detrimental effect on the endocrine and reproductive systems of both human and other animal populations 4 . Previous studies have shown a strong association between several EDCs (17p-Estradiol, DES, Zeralanol, Zeralenone, Coumestrol, Genistein, Biochanin A, Diadzein, Naringenin, Tamoxifin) and estrogenic activity via uterotropic assay, cell height, gland number, increased lactoferrin, and a transcriptional activity assay using BG1Luc4E2 cells4 . Some other examples of the effects of these EDCs are: decreased reproductive success and feminization of males in several wildlife species; increased hypospadias along with reductions in sperm counts in men; increase in the incidence of human breast and prostate cancers; and endometriosis 3-5 .
    [Show full text]
  • Endocrine Disruptors
    Endocrine disruptors Afke Groen & Christine Neuhold The RECIPES project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665 Authors Afke Groen, Maastricht University* Christine Neuhold, Maastricht University * currently works at the think tank Mr. Hans van Mierlo Stichting With thanks to our two anonymous interviewees Manuscript completed in April 2020 Document title WP2 Case study: Endocrine disruptors Work Package WP2 Document Type Deliverable Date 13 April 2020 Document Status Final version Acknowledgments & Disclaimer This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824665. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. WP2 Case study: Endocrine disruptors i Abstract Endocrine disrupting chemicals (EDCs) are at the centre stage of a scientific and regulatory controversy. Given the complexities, ambiguities and particularly the uncertainties surrounding the hazards of EDCs, the precautionary principle is of utmost relevance to the case. Even the definition of EDCs remains much contested, as do the scientific processes and methods through which to identify them. On the one hand, there is considerable societal pressure to regulate ECDs ‘now’. On the other hand, this quick regulation is often impossible as the limited evidence available does not suffice in the context of traditional EU scientific risk assessment.
    [Show full text]
  • From Adrenarche to Aging of Adrenal Zona Reticularis: Precocious Female Adrenopause Onset
    ID: 20-0416 9 12 E Nunes-Souza et al. Precocious female 9:12 1212–1220 adrenopause onset RESEARCH From adrenarche to aging of adrenal zona reticularis: precocious female adrenopause onset Emanuelle Nunes-Souza1,2,3, Mônica Evelise Silveira4, Monalisa Castilho Mendes1,2,3, Seigo Nagashima5,6, Caroline Busatta Vaz de Paula5,6, Guilherme Vieira Cavalcante da Silva5,6, Giovanna Silva Barbosa5,6, Julia Belgrowicz Martins1,2, Lúcia de Noronha5,6, Luana Lenzi7, José Renato Sales Barbosa1,3, Rayssa Danilow Fachin Donin3, Juliana Ferreira de Moura8, Gislaine Custódio2,4, Cleber Machado-Souza1,2,3, Enzo Lalli9 and Bonald Cavalcante de Figueiredo1,2,3,10 1Pelé Pequeno Príncipe Research Institute, Água Verde, Curitiba, Parana, Brazil 2Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil 3Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil 4Laboratório Central de Análises Clínicas, Hospital de Clínicas, Universidade Federal do Paraná, Centro, Curitiba, Paraná, Brazil 5Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná, General Carneiro, Alto da Glória, Curitiba, Parana, Brazil 6Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil 7Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil 8Pós Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica – UFPR, Curitiba, Brazil 9Institut de Pharmacologie Moléculaire et Cellulaire CNRS, Sophia Antipolis, Valbonne, France 100Departamento de Saúde Coletiva, Universidade Federal do Paraná, Curitiba, Paraná, Brazil Correspondence should be addressed to B C de Figueiredo: [email protected] Abstract Objective: Adaptive changes in DHEA and sulfated-DHEA (DHEAS) production from adrenal zona reticularis (ZR) have been observed in normal and pathological conditions.
    [Show full text]
  • Foxl3, a Sexual Switch in Germ Cells, Initiates Two Independent Molecular Pathways for Commitment to Oogenesis in Medaka
    foxl3, a sexual switch in germ cells, initiates two independent molecular pathways for commitment to oogenesis in medaka Mariko Kikuchia, Toshiya Nishimuraa,1, Satoshi Ishishitab, Yoichi Matsudab,c, and Minoru Tanakaa,2 aDivision of Biological Science, Graduate School of Science, Nagoya University, 464-8602 Nagoya, Japan; bAvian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601 Nagoya, Japan; and cDepartment of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601 Nagoya, Japan Edited by John J. Eppig, The Jackson Laboratory, Bar Harbor, ME, and approved April 8, 2020 (received for review October 23, 2019) Germ cells have the ability to differentiate into eggs and sperm and elegans (8–10). To date, however, neither protein has been im- must determine their sexual fate. In vertebrates, the mechanism of plicated in germline feminization. commitment to oogenesis following the sexual fate decision in During oogenesis in mice, several transcription factors facili- germ cells remains unknown. Forkhead-box protein L3 (foxl3)isa tate folliculogenesis: lhx8 (LIM homeobox 8) and figla (factor in switch gene involved in the germline sexual fate decision in the the germline alpha) regulate differentiation of primordial follicles teleost fish medaka (Oryzias latipes). Here, we show that foxl3 or- (11–14), and nobox (newborn ovary homeobox), which acts ganizes two independent pathways of oogenesis regulated by REC8 downstream of Lhx8, is indispensable for the formation of sec- meiotic recombination protein a (rec8a), a cohesin component, and ondary follicles (12, 15). It remains unknown how these tran- F-box protein (FBP)47(fbxo47), a subunit of E3 ubiquitin ligase.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Feminization of Pheromone-Sensing Neurons Affects Mating Decisions in Drosophila Males
    152 Research Article Feminization of pheromone-sensing neurons affects mating decisions in Drosophila males Beika Lu1, Kathleen M. Zelle1, Raya Seltzer2, Abraham Hefetz2 and Yehuda Ben-Shahar1,* 1Department of Biology, Washington University in St Louis, MO 63130, USA 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel *Author for correspondence ([email protected]) Biology Open 3, 152–160 doi: 10.1242/bio.20147369 Received 5th December 2013 Accepted 12th December 2013 Summary The response of individual animals to mating signals depends which can be modulated by variable social contexts. Finally, on the sexual identity of the individual and the genetics of the we show that feminization of ppk23-expressing sensory mating targets, which represent the mating social context neurons lead to major transcriptional shifts, which may (social environment). However, how social signals are sensed explain the altered interpretation of the social environment and integrated during mating decisions remains a mystery. by feminized males. Together, these data indicate that the One of the models for understanding mating behaviors in sexual cellular identity of pheromone sensing GRNs plays a molecular and cellular terms is the male courtship ritual in major role in how individual flies interpret their social the fruit fly (Drosophila melanogaster). We have recently environment in the context of mating decisions. shown that a subset of gustatory receptor neurons (GRNs) that are enriched in the male
    [Show full text]
  • The-Male-Brain.Pdf
    ALSO BY LOUANN BRIZENDINE, M.D. The Female Brain To the men in my life: My husband, Dr. Samuel Herbert Barondes My son, John “Whitney” Brizendine My brother, William “Buzz” Brizendine II And in memory of my father, Reverend William Leslie Brizendine CONTENTS Acknowledgments The Male Brain (diagram) The Cast of Neurohormone Characters Phases of a Male’s Life INTRODUCTION What Makes a Man ONE The Boy Brain TWO The Teen Boy Brain THREE The Mating Brain: Love and Lust FOUR The Brain Below the Belt FIVE The Daddy Brain SIX Manhood: The Emotional Lives of Men SEVEN The Mature Male Brain EPILOGUE The Future of the Male Brain APPENDIX The Male Brain and Sexual Orientation Notes References ACKNOWLEDGMENTS This book had its beginnings during my educational years at U.C. Berkeley, Yale, Harvard, and U.C. London, so I would like to thank those teachers who most influenced my thinking during those years: Frank Beach, Mina Bissell, Harold Bloom, Marion Diamond, Walter Freeman, Florence Haseltine, Richard Lowenstein, Daniel Mazia, Fred Naftolin, Stanley Jackson, Roy Porter, Carl Salzman, Leon Shapiro, Rick Shelton, Gunter Stent, Frank Thomas, George Valliant, Clyde Willson, Fred Wilt, Richard Wollheim. During my years on the faculty at Harvard and UCSF, my thinking has been influenced by: Cori Bargman, Samuel Barondes, Sue Carter, Regina Casper, Lee Cohen, Mary Dallman, Allison Doupe, Deborah Grady, Mel Grumbach, Leston Havens, Joel Kramer, Fernand Labrie, Sindy Mellon, Michael Merzenich, Joseph Morales, Kim Norman, Barbara Parry, Victor Reus, Eugene Roberts, Nirao Shah, Carla Shatz, Stephen Stahl, Marc Tessier-Lavigne, Rebecca Turner, Owen Wolkowitz, Chuck Yingling, and Ken Zack.
    [Show full text]
  • Premature Adrenarche: a Guide for Families
    Pediatric Endocrinology Fact Sheet Premature Adrenarche: A Guide for Families Premature adrenarche (PA) is one of the most common or ovarian) tumor, but in those cases, very rapid growth with diagnoses made in children referred to a specialist for signs enlargement of the clitoris in a girl or the penis in a boy will of early puberty. Its key features are: be a sign the child needs further testing. In addition, exposure 1) Appearance of pubic and/or underarm hair in girls to hormonal supplements may cause the appearance of PA. younger than 8 years or boys younger than 9 years 2) Adult-type underarm odor, often requiring use of Does PA cause any harm to the child? deodorants There are generally no health problems caused by PA. Girls 3) Absence of breast development in girls or of genital en- with PA may have periods a bit earlier than the average, but largement in boys (which, if present, often point to the usually not before age 10. diagnosis of true precocious puberty) It is known that girls with PA are at increased risk of de- 4) Many children are greater than average in height, and veloping a disorder called polycystic ovary syndrome (PCOS) often are above the 90th percentile in their teenage years. The signs of PCOS include irregular or absent periods and sometimes increased facial hair. Because Hormonal basis most girls with PCOS are overweight, maintaining a healthy PA is caused by an earlier-than-normal increase in pro- weight with a healthy diet and plenty of exercise is the best duction of weak male-type hormones (mainly one called way to lower the risk that your child will develop PCOS.
    [Show full text]
  • EPA Method 525.2
    METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY Revision 2.0 J.W. Eichelberger, T.D. Behymer, W.L. Budde - Method 525, Revision 1.0, 2.0, 2.1 (1988) J.W. Eichelberger, T.D. Behymer, and W.L. Budde - Method 525.1 Revision 2.2 (July 1991) J.W. Eichelberger, J.W. Munch, and J.A. Shoemaker Method 525.2 Revision 1.0 (February, 1994) J.W. Munch - Method 525.2, Revision 2.0 (1995) NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 525.2-1 METHOD 525.2 DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER BY LIQUID-SOLID EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY 1.0 SCOPE AND APPLICATION 1.1 This is a general purpose method that provides procedures for determination of organic compounds in finished drinking water, source water, or drinking water in any treatment stage. The method is applicable to a wide range of organic compounds that are efficiently partitioned from the water sample onto a C18 organic phase chemically bonded to a solid matrix in a disk or cartridge, and sufficiently volatile and thermally stable for gas chromatog-raphy. Single-laboratory accuracy and precision data have been determined with two instrument systems using both disks and cartridges for most of the following compounds: Chemical Abstract Services Analyte MW1 Registry Number Acenaphthylene 152 208-96-8 Alachlor 269 15972-60-8 Aldrin 362 309-00-2 Ametryn 227
    [Show full text]
  • Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
    Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum.
    [Show full text]
  • Reproductive Physiology and Endocrinology
    Comparative Veterinary Reproduction and Obstetrics, Instructor: Patrick J. Hemming DVM LECTURE 3 Reproductive Physiology and Endocrinology A. Reproductive endocrinology 1. Reproductive organs and hormones of the endocrine system; Endocrine control of estrus cycles, pregnancy, spermatogenesis, sexual development and behavior and all other aspects of reproduction is the responsibility of the hypothalamic-pituitary-gonadal axis. Hypothalamic hormones control the release of pituitary hormones while pituitary hormones exert their effects on the development, function and hormone synthesis of the gonads. Gonadal hormones, in addition to direct effects on the genital organs, complete the hypothalamic-pituitary-gonadal axis by either suppressing or stimulating the production and/or release of hypothalamic and pituitary hormones in what is called negative feedback or positive feedback mechanisms. Gonadal Hormones also exert influence over growth, behavior, organs or tissue function such as in the mammary glands. Most other endocrine systems have similar feedback mechanisms. A) Hypothalamus; the master endocrine gland; The hypothalamus represents the interface of the central nervous system with the endocrine system. The hypothalamus receives direct CNS innervation from several areas of the brain stem and cerebrum. Direct and indirect visual, olfactory, auditory and touch sensory inputs also innervate areas of the hypothalamus. Neurons of the hypothalamus involved with reproduction also contain receptors for estrogen and other steroidal hormones, constituting the feedback mechanism. These neuronal and hormonal signals regulate the endocrine functions of the hypothalamus. Anatomically the hypothalamus is a diffuse area of the brain, composed of groups of neurons organized into distinct nuclei. These nuclei lie dorsal and rostral of the pituitary gland and stalk, in an area surrounding the third ventricle, in the most rostral portions of the brain stem.
    [Show full text]