Energy Units and Conversion Factors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Difference Between BTU and Watts Key Difference - BTU Vs Watts
Difference Between BTU and Watts www.differencebetween.com Key Difference - BTU vs Watts It is first important to identify the concepts of energy and power in order to understand the difference between BTU and Watts. If an object is doing a work, the object is given an amount of energy to perform the task. If there is a heat transfer from or to an object, an amount of energy is removed from or given to the said object. The rate of work done or the rate of the heat transfer is defined as power. BTU and Watt are two different types of measurement units to measure the energy transfer and power, respectively. Thus, the key difference between BTU and Watts is that BTU measures energy, which is a stand-alone physical property whereas Watts measures the rate of transfer of energy that is always associated with a time factor. What is BTU? BTU is the abbreviated form for British Thermal Unit. The term thermal is often used for measuring thermal energy or the energy in the form of heat. BTU is not a part of the International System of Units or SI units. But it is often used as a measurement in heating and air-conditioning industry even at present. One BTU is defined as the amount of heat that should be transferred to one pound (lb) of water to raise its temperature by one degree of Fahrenheit (F). Since lb and F are both conventional units, the BTU can be identified by its SI units’ counterpart, Joule (J). That is, one joule is the heat required to transfer to one gram of water to raise the temperature by one degree Celsius (C). -
Natural Gas, 22.6
Syllabus Section I Power Market Restructuring: Current Context and Historical Events ** Important Acknowledgement: These notes are an edited abridged version of a set of on-line lecture notes prepared by Professor Tom Overbye, ECpE, University of Illinois, 2008 Last Revised: 9/13/2011 Setting Course Topics in Context EE/Econ 458 focuses on the restructuring of wholesale power markets, using the U.S. as the primary source of illustrations. Particular attention will be focused on U.S. restructuring efforts in the Midwest (MISO), New England (ISO-NE), New York (NYISO), mid- Atlantic States (PJM), California (CAISO), Texas (ERCOT), and the Southwest Power Pool (SPP). First, however, it is important to consider this restructuring movement within the larger context of the energy delivery system as a whole. Electric Systems in Energy Context Electricity is used primarily as a means for energy transportation. – Other sources of energy are used to create it, and once created it is usually converted into other forms of energy before actual use. About 40% of US energy is transported in electric form. Concerns about CO2 emissions and the depletion of fossil fuels are becoming main drivers for change in the world energy infrastructure. Measurement of Power Power: Instantaneous consumption of energy Power Units Watts (W) = voltage times current for DC systems kW – 1 x 103 Watts MW – 1 x 106 Watts GW – 1 x 109 Watts Installed U.S. generation capacity is about 900 GW ( about 3 kW per person) Measurement of Energy Energy: Integration of power over time; energy is what people really want from a power system Energy Units: Joule = 1 Watt-second (J) kWh – Kilowatt-hour (3.6 x 106 J) Btu – 1054.85 J (British Thermal Unit) Note on Unit Conversion: 3413 Btu ≈ 1 kWh Annual U.S. -
Jersey Energy Trends 2018 Report
Energy Trends 2018 Statistics Jersey: www.gov.je/statistics Overview This report examines supply and use of energy in Jersey through the importation, distribution and consumption of fuels such as petroleum products and electricity. The focus of the report is on energy supply and use in 2018. Figures are also presented for calendar years 2014 to 2017. Longer term trends, going back to 1991, are shown for road fuel consumption and for electricity importation and generation. The energy data presented in this report provides the basis for calculating carbon emissions for Jersey. Through the UK, Jersey is a signatory to the Kyoto Protocol; the document “Pathway 2050: An Energy Plan for Jersey”11outlines how the Island intends to reduce its carbon emissions in line with the commitments of the UK and other European nations. Jersey’s energy data is submitted annually to the compilers of the UK’s national greenhouse gas inventory, Aether, who independently verify and validate the data using internationally agreed methodologies. The resultant emissions calculated for Jersey are published by Aether2 and submitted to the international inventories as part of the UK’s national inventory. Summary for 2018 Supply • almost all of Jersey’s energy supply was imported; about 2% was produced on-Island as electricity generated by the Energy from Waste Facility • petroleum products accounted for almost two-thirds (63%) of Jersey’s energy supply; electricity (imported and on-Island generated) accounted for the remainder (37%) • Jersey’s total primary energy -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Consumption in the EU Above the Energy Efficiency Target 4% Gap for Primary Energy Consumption and 2% Gap for Final Energy Consumption Targets
25/2018 - 5 February 2018 Energy consumption in 2016 Consumption in the EU above the energy efficiency target 4% gap for primary energy consumption and 2% gap for final energy consumption targets The European Union (EU) has committed itself to reducing energy consumption by 20% by 2020 compared to projections. This objective is also known as the 20% energy efficiency target. In other words, the EU has pledged to attaining a primary energy consumption of no more than 1 483 million tonnes of oil equivalent (Mtoe) and a final energy consumption of no more than 1 086 Mtoe in 2020. In 2016, primary energy consumption in the EU was 4% off the efficiency target. Since 1990, the first year for which data are available, the consumption has reduced by 1.7%. However, over the years, the distance from primary energy consumption target has fluctuated greatly. The biggest divergence from the target was in 2006 (16.2%, a consumption level of 1 723 Mtoe), while a record low was reached in 2014 (1.7%, 1 509 Mtoe). Over the last two years the gap rose again, to 4% above the 2020 target, equating to a consumption of 1 543 Mtoe in 2016. Primary energy consumption in the EU, 2016 (in million tonnes of oil equivalent, Mtoe) (Mtoe) 1 800 1 700 15.5 % 1 600 4.0 % 1 500 1 400 1990 1995 2000 2005 2010 2015 2020 Primary Energy Consumption (Mtoe) 2020 Target (Mtoe) In 2016, final energy consumption in the EU was 1 108 Mtoe, 2.0% above the efficiency target. -
The Basic Unit of Energy Is a Joule (J). Other Units Are Kilojoule, Calorie, British Thermal Unit (BTU), and Therm
194 Name ___________________________________ Date ________________ APES Topic 11 – Energy Resources Mr. Romano APES Energy Problems (for this practice, you may use your calculator) The Basics: Energy: The basic unit of energy is a Joule (J). Other units are kilojoule, calorie, British Thermal Unit (BTU), and therm. 1000J = 1 kJ (you should know this already …) Power: Power is the rate at which energy is used. Power (watts) = Energy (joules) time (sec) 1W = 1J/s (1Watt = 1 Joule per second) 1kW = 1000 J/sec 1. A 100 Watt incandescent light bulb uses 100 J/sec of electrical energy. If it is 5% efficient, then the bulb converts 5% of the electrical energy into light and 95% is wasted by being transformed into heat (ever felt a hot light bulb?) a. How is the First Law of Thermodynamics referenced above? b. How is the Second Law of Thermodynamics referenced above? Practice Problems: 2. How much energy, in kJ, does a 75 Watt light bulb use then it is turned on for 25 minutes? 195 3. The Kilowatt Hour, or kWh, is not a unit of power but of energy. Notice that kilowatt is a unit of power and hour is a unit of time. E = P x t (rearranged from above). A kilowatt hour is equal to 1 kW delivered continuously for 1 hour (3600 seconds). a. How many joules are equal to 1 kWh? b. How many kJ are equal to 1 kWh? c. Assume your electric bill showed you used 1355 kWh over a 30-day period. Find the energy used, in kJ, for the 30 day period. -
Energy Words Poster
Energy words A table of energy units and old energy measures Complete list of SI metric energy units Some words currently used as energy measures, old pre-metric, early metric, or cross-bred energy measures Atomic energy unit, barrel oil equivalent, bboe, billion electron volts, Board of Trade unit, BOE, BOT, brake horsepower-hour, British thermal unit, British thermal unit (16 °C), British thermal unit (4 °C), British thermal unit (international), British thermal joule J unit (ISO), British thermal unit (IT), British thermal unit (mean), British thermal unit (thermal), British thermal unit (thermochemical), British thermal unit-39, British thermal unit- 59, British thermal unit-60, British thermal unit-IT, British The single SI metric unit can also be used with thermal unit-mean, British thermal unit-th, BThU, BThU-39, BThU-59, BThU-60, BThU-IT, BThU-mean, BThU-th, Btu, Btu- the SI metric prefixes to form multiples of the 39, Btu-59, Btu-60, Btu-IT, Btu-mean, Btu-th, cal, cal-15, cal- 20, cal-mean, calorie, Calorie, calorie (16 °C), calorie (20 °C), calorie (4 °C), calorie (diet kilocalorie), calorie (int.), calorie SI unit: (IT) (International Steam Table), calorie (mean), calorie (thermochemical), calorie-15, Calorie-15, calorie-20, Calorie- 20, calorie-IT, Calorie-IT, calorie-mean, Calorie-mean, calorie- th, Calorie-th, cal-th, Celsius heat unit, Celsius heat unit (int.), kilojoule kJ Celsius heat unit-IT, Celsius heat unit-mean, Celsius heat unit- th, centigrade heat unit, centigrade heat unit-mean, centigrade heat unit-th, Chu, -
General Conversion Table in Alphabetical Order
General Conversion Table In Alphabetical Order UNIT x FACTOR = UNIT UNIT x FACTOR = UNIT Acceleration gravity 9.80665 meter/second2 british thermal unit (BTU) 1054.35 watt-seconds Acceleration gravity 32.2 feet/second2 british thermal unit (BTU) 10.544 x 103 ergs Acceleration gravity 9.80665 meter/second2 british thermal unit (BTU) 0.999331 BTU (IST) Acceleration gravity 32.2 feet/second2 BTU/min 0.01758 kilowatts acre 4,046.856 meter2 BTU/min 0.02358 horsepower acre 0.40469 hectare byte 8.000001 bits acre 43,560.0 foot2 calorie, g 0.00397 british thermal unit acre 4,840.0 yard2 calorie, g 0.00116 watt-hour acre 0.00156 mile2 (statute) calorie, g 4184.00 x 103 ergs acre 0.00404686 kilometer2 calorie, g 3.08596 foot pound-force acre 160 rods2 calorie, g 4.184 joules acre feet 1,233.489 meter2 calorie, g 0.000001162 kilowatt-hour acre feet 325,851.0 gallon (US) calorie, g 42664.9 gram-force cm acre feet 1,233.489 meter3 calorie, g/hr 0.00397 btu/hr acre feet 325,851.0 gallon calorie, g/hr 0.0697 watts acre-feet 43560 feet3 candle/cm2 12.566 candle/inch2 acre-feet 102.7901531 meter3 candle/cm2 10000.0 candle/meter2 acre-feet 134.44 yards3 candle/inch2 144.0 candle/foot2 ampere 1 coulombs/second candle power 12.566 lumens ampere 0.0000103638 faradays/second carats 3.0865 grains ampere 2997930000.0 statamperes carats 200.0 milligrams ampere 1000 milliamperes celsius 1.8C°+ 32 fahrenheit ampere/meter 3600 coulombs celsius 273.16 + C° kelvin angstrom 0.0001 microns centimeter 0.39370 inch angstrom 0.1 millimicrons centimeter 0.03281 foot atmosphere -
Full Report – BP Statistical Review of World Energy 2019
BP Statistical Review of World Energy 2019 | 68th edition Contents Introduction For 66 years, Natural the BPgas Statistical Review of WorldRenewable energy 1 Group chief executive’s introductionEnergy 3has 0 Reserves provided high-quality objective 5 1 andRenewables consumption 2 2018 at a glance globally 3consistent 2 Production data on world energy 52 markets. Generation by source 3 Group chief economist’s analysisThe review 3 4 Consumption is one of the most widely respected 5 3 Biofuels production and authoritative 3 7 Prices publications in the field of energy 3 8 Trade movements Electricity Primary energy economics, used for reference by the media, 8 Consumption 5 4 Generation 9 Consumption by fuel academia, Coalworld governments and energy 56 Generation by fuel 12 Consumption per capita companies. 4 2 Reserves A new edition is published every June. 44 Production CO2 Carbon Oil 45 Consumption 5 7 Carbon dioxide emissions 1 4 Reserves Discover more 47 onlinePrices and trade movements 1 6 Production All the tables and charts found in the latest printed Key minerals edition are available at bp.com/statisticalreviewNuclear energy 20 Consumption plus a number of extras, including: 5 8 Production • The energy charting tool – view 4 8 Consumption 2 4 Prices predetermined reports or chart specific data 59 Reserves 2 6 Refining according to energy type, region, country 59 Prices and year. Hydroelectricity 2 8 Trade movements • Historical data from 1965 for many sections. • Additional data 4 9for refinedConsumption oil production Appendices demand, natural gas, coal, hydroelectricity, nuclear energy and renewables. 6 0 Approximate conversion factors • PDF versions and PowerPoint slide packs of 6 0 Definitions the charts, maps and graphs, plus an Excel workbook of the data. -
Annexes A.1 A
World Energy Council 2013 World Energy Resources: Annexes A.1 A Annexes Contents 1. Abbreviations and Acronyms / page 2 2. Conversion Factors and Energy Equivalents / page 5 3. Definitions / page 6 A.2 World Energy Resources: Annexes World Energy Council 2013 1. Abbreviations and Acronyms 103 kilo (k) CMM coal mine methane 106 mega (M) CNG compressed natural gas 9 10 giga (G) CO2e carbon dioxide equivalent 1012 tera (T) COP3 Conference of the Parties III, Kyoto1997 1015 peta (P) cP centipoise 1018 exa (E) CSP centralised solar power 1021 zetta (Z) d day ABWR advanced boiling water reactor DC direct current AC alternating current DHW domestic hot water AHWR advanced heavy water reactor DOWA deep ocean water applications API American Petroleum Institute ECE Economic Commission for Europe APR advanced pressurised reactor EIA U.S. Energy Information Administration / environmental impact assessment APWR advanced pressurised water reactor EOR enhanced oil recovery b/d barrels per day EPIA European Photovoltaic Industry Association bbl barrel EPR European pressurised water reactor bcf billion cubic feet ESTIF European Solar Thermal Industry Federation bcm billion cubic metres ETBE ethyl tertiary butyl ether BGR Bundesanstalt für Geowissenschaften und Rohstoffe F Fahrenheit billion 109 FAO UN Food and Agriculture Organization BIPV building integrated PV FBR fast breeder reactor BNPP buoyant nuclear power plant FID final investment decision boe barrel of oil equivalent FSU former Soviet Union BOO build, own, operate ft feet BOT build, operate, -
Modifying Energy Buying Habits – ASP Presentation Outline.Pdf
Farm Energy IQ Modifying Energy Buying Habits—ASP Presentation Outline The intent of this lesson is to provide information and skills to the attendees who have demonstrated an interest in comparing energy source costs as a means to reduce their farm energy costs. Slides 1 through 3: Introduction. The presenter introduces self and points out that while the topic may seem complicated; it is mostly about getting all the energy sources and their costs into common units. There may be savings to be enjoyed if the attendees are willing to crunch the numbers. Slide 3 outlines the content of the module and the topics covered. Slides 4 and 5: Typical large energy consuming operations on the farm. Slide 5 emphasizes that heating water with electricity is usually the most expensive option. It also points out that electric motors and lighting can only use electricity as the energy source. Slides 6 through 8: Other fuels that should be considered for heating applications. Slide 8 introduces the renewable/non-renewable energy concept with fuels listed as renewable or non-renewable. Slide 9: Energy content of the eight fuels listed on the back of the ENERGY Selector. It is important to know the energy content of these fuels so that the cost per Btu can be addressed and calculated later in the presentation. Slide 10: Energy value of a therm. This unit is used in some locations when selling natural gas. This is important because the ENERGY Selector uses $ per therm as its natural gas unit. There are about 10 therms per MCF (thousand cubic feet). -
Conversion Factors and Unit Abbreviations
Conversion factors Key World Energy Statistics Conversion factors and unit abbreviations General conversion factors for energy To: TJ Gcal Mtoe MBtu GWh From: multiply by: TJ 1 2.388 x 102 2.388 x10-5 9.478 x 102 2.778 x 10-1 Gcal 4.187 x 10-3 1 1.000 x 10-7 3.968 1.163 x 10-3 Mtoe 4.187 x 104 1.000 x 107 1 3.968 x 107 1.163 x 104 MBtu 1.055 x 10-3 2.520 x 10-1 2.520 x 10-8 1 2.931 x 10-4 GWh 3.600 8.598 x 102 8.598 x 10-5 3.412 x 103 1 Conversion factors for mass To: kg t lt st lb From: multiply by: kilogramme (kg) 1 1.000 x 10-3 9.842 x 10–4 1.102 x 10–3 2.205 tonne (t) 1.000 x 103 1 9.842 x 10–1 1.102 2.205 x 103 long ton (lt) 1.016 x 103 1.016 1 1.120 2.240 x 103 short ton (st) 9.072 x 102 9.072 x 10–1 8.929 x 10–1 1 2.000 x 103 pound (lb) 4.536 x 10–1 4.536 x 10–4 4.464 x 10–4 5.000 x 10–4 1 Conversion factors for volume To: gal U.S. gal U.K. bbl ft3 l m3 From: multiply by: U.S. gallon (gal) 1 8.327 x 10-1 2.381 x 10-2 1.337 x 10-1 3.785 3.785 x 10-3 U.K.