Submembraneous Microtubule Cytoskeleton: Biochemical and Functional Interplay of TRP Channels with the Cytoskeleton Chandan Goswami and Tim Hucho

Total Page:16

File Type:pdf, Size:1020Kb

Submembraneous Microtubule Cytoskeleton: Biochemical and Functional Interplay of TRP Channels with the Cytoskeleton Chandan Goswami and Tim Hucho MINIREVIEW Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton Chandan Goswami and Tim Hucho Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany Keywords Much work has focused on the electrophysiological properties of transient actin; axonal guidence; cytoskeleton; growth receptor potential channels. Recently, a novel aspect of importance cone; myosin; pain; signalling complex; emerged: the interplay of transient receptor potential channels with the transient receptor potential channels; cytoskeleton. Recent data suggest a direct interaction and functional reper- tubulin; varicosity cussion for both binding partners. The bi-directionality of physical and Correspondence functional interaction renders therefore, the cytoskeleton a potent integra- C. Goswami, Department for Molecular tion point of complex biological signalling events, from both the cytoplasm Human Genetics, Max Planck Institute for and the extracellular space. In this minireview, we focus mostly on the Molecular Genetics, Ihnestrasse 73, 14195 interaction of the cytoskeleton with transient receptor potential vanilloid Berlin, Germany channels. Thereby, we point out the functional importance of cytoskeleton Fax: +49 30 8413 1383 components both as modulator and as modulated downstream effector. Tel: +49 30 8413 1243 E-mail: [email protected] The resulting implications for patho-biological situations are discussed. (Received 15 April 2008, revised 23 June 2008, accepted 30 July 2008) doi:10.1111/j.1742-4658.2008.06617.x The microtubule cytoskeleton plays a role in a variety with various membrane proteins, which often are part of cellular aspects such as division, morphology and of large protein complexes. The dynamic properties motility, as well as the transport of molecules and and the complexity of tubulin as an interacting protein organelles toward and from the cell membrane. in large complexes at the membrane just are beginning Although all these phenomena affect the plasma mem- to be unravelled. One apparent function is to serve as brane, however, most of the microtubule filaments do a scaffold protein and modulator of transmembrane not reach to the lipid membrane region, partially due signalling. to a thick hindering cortical actin network. However, recent studies indicate that a small number of dynamic Cytoskeletal components in signalling microtubules can extend rapidly to the cell membrane. complexes at membranes Although most contacts are established only tran- siently, there are membranous regions in which the The cytoplasmic domains of transient receptor pot- plus end of these pioneering microtubules is stabilized. ential (TRP) channels recruit large complexes of Stabilization appears to be mediated by the interaction proteins, lipids and small molecules. Depending on the Abbreviations FHIT, fragile histidine triad protein; MAP, microtubule-associated protein; RTX, resinferatoxin; TRP, transient receptor potential; TRPV, transient receptor potential vanilloid; TRPV1, transient receptor potential vanilloid subtype 1; TRPV1-Ct, C-terminal of transient receptor potential vanilloid subtype 1; TRPV1-Nt, N-terminal of transient receptor potential vanilloid subtype 1; TRPV2, transient receptor potential vanilloid subtype 2; TRPV4, transient receptor potential vanilloid subtype 4. 4684 FEBS Journal 275 (2008) 4684–4699 ª 2008 The Authors Journal compilation ª 2008 FEBS C. Goswami and T. Hucho TRP channels and cytoskeleton regulate each other preparation method, these structures have been domains like ankyrin repeats, Ca2+-sensing EF hands, referred to as ‘signalplex’, i.e. complexes involved in phosphorylation sites, calmodulin-binding sites and a signalling events [1], or ‘channelosome’, i.e. complexes so-called ‘TRP box’. Based on their sequence, the formed around functional ion channels [2], and ⁄ or as mammalian TRP family is differentiated into six ‘lipid raft complexes’, i.e. complexes localized to this subfamilies, namely TRP canonical (TRPC), TRP membranous subdomain [3]. Proteomic studies of vanilloid (TRPV), TRP melastatin (TRPM), TRP ‘signalplexes’ or ‘channelosomes’ purified from cell polycystin (TRPP), TRP mucolipin (TRPML) and lines, as well as from brain, give both direct and indi- TRP ankayrin (TRPA) ion channels [18]. All TRP rect evidence for the presence of the cytoskeleton as channels investigated to date are involved in the detec- well as ion channels. Scaffolding adaptors like inacti- tion and ⁄ or transduction of physical and chemical vation-no-afterpotential D [4–6], Na+ ⁄ H+ exchanger stimuli. regulatory factor [7] and ezrin ⁄ moesin ⁄ radixin-binding phosphoprotein 50 [8] are also found, some of which TRPV1 and the cytoskeleton interact directly with ion channels, e.g. TRP channels [9], but also contain binding motifs for cytoskeletal Physical interaction of TRPV1 with the proteins [8,10]. Accordingly, cytoskeletal proteins such cytoskeleton as spectrin, myosin, drebrin and neurabin, as well as tubulin and actin [1,2,6,11] are confirmed components TRPV1 is the founding member of the vanilloid sub- in signalplexes and channelosomes. family of TRP channels and detects several endo- Complementary proteomic studies of purified lipid genous agonists (e.g. N-arachidonoyl-dopamine) and rafts reveal the presence of several cytoskeletal proteins noxious exogenous stimuli, such as capsaicin (the main [12,13] such as a- and b-tubulin, tubulin-specific chaper- pungent ingredient of hot chilly) and high temperature one A (a folding protein involved in tubulin dimer (> 42 °C) [19,20]. TRPV1 is a nonselective cation assembly), KIF13 (a kinesin) [12], actin, nonconven- channel with high permeability for Ca2+. In recent tional myosin II and nonconventional myosin V [14]. years, TRPV1 has gained extensive attention for its Similarly, proteomics studies of the ‘membrane cyto- involvement in signalling events in the context of pain skeleton’, a submembranous fraction, which is attached and other pathophysiological conditions including to the cytoskeleton [15], and of cytoskeleton-associated cancer [21–27]. proteins in general [16], indicate the presence of lipid The interaction of TRPV1 with tubulin was first iden- raft membrane proteins as well as cytoskeletal proteins. tified through a proteomic analysis of endogenous inter- Together, these varying studies give strong evidence actors enriched from neuronal tissue [28]. The that cytoskeletal proteins are part of signalling com- interaction was then confirmed by biochemical plexes including transmembrane proteins and are approaches including co-immunoprecipitation, micro- involved in their organization at membrane. tubule co-sedimentation, pull-down and cross-linking experiments. In contrast to the tubulin cytoskeleton, the physical interaction of TRPV1 with actin or neurofila- Structural features of TRP channels ment cytoskeleton has not been observed to date [28,29]. The TRP family of ion channels is named after the The C-terminus of TRPV1 (TRPV1-Ct) is sufficient Drosophila melanogaster trp mutant, which is charac- for the interaction with tubulin while the N-terminus terized by a transient receptor potential in the photore- of TRPV1 (TRPV1-Nt) apparently does not interact ceptors in response to light [17]. In the meantime, [28]. Using deletion constructs and biotinylated pep- orthologues and paralogues of TRP channels have tides, the tubulin-binding region located within been described in organisms ranging from simple TRPV1-Ct was mapped to two short, highly basic eukaryotes to human. They share a high degree of regions (amino acids 710–730 and 770–797) [29]. If an homology in their amino acid sequence. TRP channels a-helical conformation is assumed, these two regions are formed by monomers with six transmembrane project all their basic amino acids to one side, thus regions that assemble into tetramers, which form the potentially enabling interactions with negatively functional cation-permeable pore. The most conserved charged residues (Fig. 1). Indeed, correspondingly, the region is the sixth transmembrane domain, which con- C-terminal over-hanging region of tubulin contains a stitutes most of the inner lining of the ion channel large number of negatively charged glutamate (E) resi- pore. The N- and C-termini of TRP channels are dues in a stretch characterized as unstructured region located in the cytoplasm and, depending on the respec- of the tubulin and referred as E-hook. These E-hooks tive TRP channel, consist of various functional are known to be essential for the interaction of tubulin FEBS Journal 275 (2008) 4684–4699 ª 2008 The Authors Journal compilation ª 2008 FEBS 4685 TRP channels and cytoskeleton regulate each other C. Goswami and T. Hucho A with various microtubule-associated proteins such as MAPs, Tau, as well as others. Indeed, binding of TRPV1-Ct with tubulin was abolished when the E-hooks containing over-hangs were removed by prote- B ase treatment [29]. The tubulin-binding region of TRPV1 apparently is under high evolutionary pressure as its sequence is highly conserved in all TRPV1 ortho- logues [29]. Also between homologues, the distribution of basic amino acids composing the tubulin-binding regions is conserved even though the overall amino acid conservation is rather limited. Based on these data an interaction of tubulin with TRPV2, TRPV3 and TRPV4 (Fig. 2) can also be predicted. These TRPV1 homo- logues have the highest conservation of basic charge distribution
Recommended publications
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Download File
    STRUCTURAL AND FUNCTIONAL STUDIES OF TRPML1 AND TRPP2 Nicole Marie Benvin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 © 2017 Nicole Marie Benvin All Rights Reserved ABSTRACT Structural and Functional Studies of TRPML1 and TRPP2 Nicole Marie Benvin In recent years, the determination of several high-resolution structures of transient receptor potential (TRP) channels has led to significant progress within this field. The primary focus of this dissertation is to elucidate the structural characterization of TRPML1 and TRPP2. Mutations in TRPML1 cause mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We determined the first high-resolution crystal structures of the human TRPML1 I-II linker domain using X-ray crystallography at pH 4.5, pH 6.0, and pH 7.5. These structures revealed a tetramer with a highly electronegative central pore which plays a role in the dual Ca2+/pH regulation of TRPML1. Notably, these physiologically relevant structures of the I-II linker domain harbor three MLIV-causing mutations. Our findings suggest that these pathogenic mutations destabilize not only the tetrameric structure of the I-II linker, but also the overall architecture of full-length TRPML1. In addition, TRPML1 proteins containing MLIV- causing mutations mislocalized in the cell when imaged by confocal fluorescence microscopy. Mutations in TRPP2 cause autosomal dominant polycystic kidney disease (ADPKD). Since novel technological advances in single-particle cryo-electron microscopy have now enabled the determination of high-resolution membrane protein structures, we set out to solve the structure of TRPP2 using this technique.
    [Show full text]
  • Topological Network Analysis of Differentially Expressed Genes In
    CANCER GENOMICS & PROTEOMICS 12 : 153-166 (2015) Topological Network Analysis of Differentially Expressed Genes in Cancer Cells with Acquired Gefitinib Resistance YOUNG SEOK LEE 1, SUN GOO HWANG 2, JIN KI KIM 1, TAE HWAN PARK 3, YOUNG RAE KIM 1, HO SUNG MYEONG 1, KANG KWON 4, CHEOL SEONG JANG 2, YUN HEE NOH 1 and SUNG YOUNG KIM 1 1Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Republic of Korea; 2Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea; 3Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Republic of Korea; 4School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea Abstract. Background/Aim: Despite great effort to elucidate into the complex mechanism of AGR and to novel gene the process of acquired gefitinib resistance (AGR) in order to expression signatures useful for further clinical studies. develop successful chemotherapy, the precise mechanisms and genetic factors of such resistance have yet to be elucidated. Although chemotherapy is the most common treatment for Materials and Methods: We performed a cross-platform meta- various cancer types, the development of acquired resistance analysis of three publically available microarray datasets to anticancer drugs remains a serious problem, leading to a related to cancer with AGR. For the top 100 differentially majority of patients who initially responded to anticancer expressed genes (DEGs), we clustered functional modules of drugs suffering the recurrence or metastasis of their cancer (1- hub genes in a gene co-expression network and a protein- 3). Acquired drug resistance (ADR) is known to have a multi- protein interaction network.
    [Show full text]
  • TRPA1 Is a Candidate for the Mechanosensitive Transduction Channel of Vertebrate Hair Cells
    articles TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells David P. Corey1,2*, Jaime Garcı´a-An˜overos4*, Jeffrey R. Holt5*, Kelvin Y. Kwan1,2*, Shuh-Yow Lin1,6*, Melissa A. Vollrath1,2*, Andrea Amalfitano8, Eunice L.-M. Cheung1, Bruce H. Derfler1,2, Anne Duggan4, Gwe´nae¨lle S. G. Ge´le´oc5, Paul A. Gray1,3, Matthew P. Hoffman9, Heidi L. Rehm7, Daniel Tamasauskas1,2 & Duan-Sun Zhang1,2 1Department of Neurobiology and 2Howard Hughes Medical Institute, Harvard Medical School, and 3Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA 4Departments of Anesthesiology, Neurology and Physiology, Northwestern University Institute for Neurosciences, Chicago, Illinois 60611, USA 5Departments of Neuroscience and Otolaryngology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA 6Department of Biology, Massachusetts Institute of Technology, and 7Laboratory for Molecular Medicine, Harvard-Partners Genome Center, Cambridge, Massachusetts 02139, USA 8Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27705, USA 9Matrix and Morphogenesis Unit, CDBRB, NIDCR, NIH, Bethesda, Maryland 20892, USA * These authors contributed equally to this work ........................................................................................................................................................................................................................... Mechanical deflection of the sensory hair bundles of receptor
    [Show full text]
  • Original Article ITGA8 Accelerates Migration and Invasion of Myeloma Cells in Multiple Myelomas
    Int J Clin Exp Med 2021;14(2):1126-1132 www.ijcem.com /ISSN:1940-5901/IJCEM0122176 Original Article ITGA8 accelerates migration and invasion of myeloma cells in multiple myelomas Mengmeng Cui1, Jiangfang Feng1, Xuezhong Gu2, Zhuowei Zhang3, Junxia Zhao1, Hongmei Chai1, Jing Li4, Zheng Xu5 1Department of Hematology, Jincheng General Hospital, Jincheng, Shanxi Province, China; 2Department of He- matology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China; 3Personnel Depart- ment of Shanxi Medical University, Taiyuan, Shanxi Province, China; 4Department of Oncology, Jincheng General Hospital, Jincheng, Shanxi Province, China; 5Department of Orthopaedics, Jincheng General Hospital, Jincheng, Shanxi Province, China Received September 11, 2020; Accepted October 14, 2020; Epub February 15, 2021; Published February 28, 2021 Abstract: Multiple myeloma is cancer of the plasma cells and is the second most common cancer of the blood system, which is characterized by increased calcium levels, renal insufficiency, anemia, bone disease, and suscep- tibility to infection due to suppression of immunoglobulin production. Early diagnosis of multiple myeloma is difficult as it has no symptoms until it reaches an advanced stage. Therefore, key genes involved in the pathogenesis of multiple myeloma might be significant markers for early diagnosis and treatment of the disease. We analyzed the differentially expressed genes in patients with multiple myeloma using sequencing microarrays from the GEO da- tabase. Combined with GO and KEGG analysis, we identified ITGA8 as a key target in the pathogenesis of multiple myeloma, and further verified the differential expression of ITGA8 in myeloma cell lines by rtPCR experiments. Our study contributes to a better understanding of the development of multiple myeloma and advances the application of bioinformatics in clinical diagnosis.
    [Show full text]
  • Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
    1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704
    [Show full text]
  • Permeation, Regulation and Control of Expression of TRP Channels by Trace Metal Ions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Pflugers Arch - Eur J Physiol (2015) 467:1143–1164 DOI 10.1007/s00424-014-1590-3 INVITED REVIEW Permeation, regulation and control of expression of TRP channels by trace metal ions Alexandre Bouron & Kirill Kiselyov & Johannes Oberwinkler Received: 15 April 2014 /Revised: 10 July 2014 /Accepted: 13 July 2014 /Published online: 10 August 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Transient receptor potential (TRP) channels form a TRPML channels . Channel regulation . Transition metals . diverse family of cation channels comprising 28 members in Zinc .Cadmium .Copper .Magnesium .Nickel .Iron .Lead . mammals. Although some TRP proteins can only be found on Barium . Strontium . Manganese . Lanthanum . Gadolinium intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their Introduction involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing num- Some trace metals like zinc (Zn2+), iron (Fe2+/Fe3+)orcopper ber of studies have started to expand our understanding of (Cu+/Cu2+) are involved in a wide diversity of biological these proteins by showing that they also transport other bio- processes. Other metal ions like cadmium (Cd2+) or lead logically relevant metal ions like zinc, magnesium, manga- (Pb2+) have only toxic properties, at least in vertebrate cells. nese and cobalt. In addition to this newly recognized property, The molecular mechanisms by which these cations enter into the activity and expression of TRP channels can be regulated cells are still not fully understood.
    [Show full text]
  • Mouse Mcoln3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Mcoln3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Mcoln3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Mcoln3 gene (NCBI Reference Sequence: NM_134160 ; Ensembl: ENSMUSG00000036853 ) is located on Mouse chromosome 3. 12 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 12 (Transcript: ENSMUST00000039450). Exon 6 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Mcoln3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-90O23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Heterozygotes show normal/diluted/white hair patches, circling, hyperactivity, deafness, and reduced fertility. Homozygotes are white with small patches of color and show severe behavioral abnormalities, poor postnatal viability and are nearly infertile. Exon 6 starts from about 44.18% of the coding region. The knockout of Exon 6 will result in frameshift of the gene. The size of intron 5 for 5'-loxP site insertion: 1954 bp, and the size of intron 6 for 3'-loxP site insertion: 2403 bp. The size of effective cKO region: ~600 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 6 12 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Mcoln3 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Characterization and Expression Analysis of Mcoln1.1 and Mcoln1.2, the Putative Zebrafish Co-Orthologs of the Gene Responsible F
    Int. J. Dev. Biol. 57: 85-93 (2013) doi: 10.1387/ijdb.120033gb www.intjdevbiol.com Characterization and expression analysis of mcoln1.1 and mcoln1.2, the putative zebrafish co-orthologs of the gene responsible for human mucolipidosis type IV ANNA BENINI1, ANDREA BOZZATO1, SILVIA MANTOVANELLI1, LAURA CALVARINI1, EDOARDO GIACOPUZZI1, ROBERTO BRESCIANI1, SILVIA MOLERI2, DANIELA ZIZIOLI1, MONICA BELTRAME2 and GIUSEPPE BORSANI*,1 1Dipartimento di Scienze Biomediche e Biotecnologie, Universita' degli Studi di Brescia, Italy and 2Dipartimento di BioScienze, Universita' degli Studi di Milano, Milano, Italy ABSTRACT Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder caused by mutations in the MCOLN1 gene coding for mucolipin-1 (TRPML1). TRPML1 belongs to a transient receptor potential channels (TRP) subfamily, which in mammals includes two other members: mucolipin-2 (TRPML2) and mucolipin-3 (TRPML3). Bioinformatic analysis of the Danio rerio (zebrafish) genome and trascriptome revealed the presence of five different genes related to human mucolipins: mcoln1.1, mcoln1.2, mcoln2, mcoln3.1 and mcoln3.2. We focused our efforts on the characterization of the two putative zebrafish MCOLN1 co-orthologs. Transient-expression experiments in human HeLa cells demonstrated that fish Mcoln1.1 and Mcoln1.2, similarly to TRPML1, localize to late endosomal/lysosomal compartments. Real-Time PCR (RT-PCR) experi- ments showed that both genes are maternally expressed and transcribed at different levels during embryogenesis. RT-PCR analysis in different zebrafish tissues displayed ubiquitary expression for mcoln1.1 and a more tissue-specific pattern for mcoln1.2. Spatial and temporal expression studies using whole-mount in situ hybridization confirmed that both genes are maternally expressed and ubiquitously transcribed during gastrulation and early somitogenesis.
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • Supplementary Information
    SUPPLEMENTARY INFORMATION 1. SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Long-term exposure to sorafenib increases the expression of progenitor cell-like features. A) mRNA expression levels of PROM-1 (CD133), THY-1 (CD90), EpCAM, KRT19, and VIM assessed by quantitative real-time PCR. Data represent the mean expression value for a gene in each phenotypic type of cells, displayed as fold-changes normalized to 1 (expression value of its corresponding parental non-treated cell line). Expression level is relative to the GAPDH gene. Bars indicate standard deviation. Significant statistical differences are set at p<0.05. B) Immunocitochemical staining of CD90 and vimentin in Hep3B sorafenib resistant cell line and its parental cell line. C) Western blot analysis comparing protein levels in resistant Hu6 and Hep3B cells vs their corresponding parental cells lines. Supplementary Figure 2. Efficacy of gene silencing of IGF1R and FGFR1 and evaluation of MAPK14 signaling activation. IGF1R and FGFR1 knockdown expression 48h after transient transfection with siRNAs (50 nM), in non-treated parental cells and sorafenib-acquired resistant tumor derived cells was assessed by quantitative RT-PCR (A) and western blot (B). C) Activation status of MAPK14 signaling was evaluated by western blot analysis in vivo, in tumors with acquired resistance to sorafenib in comparison to non-treated tumors (right panel), as well as in in vitro, in sorafenib resistant cell lines vs parental non-treated. Supplementary Figure 3. Gene expression levels of several pro-angiogenic factors. mRNA expression levels of FGF1, FGF2, VEGFA, IL8, ANGPT2, KDR, FGFR3, FGFR4 assessed by quantitative real-time PCR in tumors harvested from mice.
    [Show full text]
  • Transcriptomes of Major Renal Collecting Duct Cell Types In
    Transcriptomes of major renal collecting duct cell types PNAS PLUS in mouse identified by single-cell RNA-seq Lihe Chena, Jae Wook Leeb, Chung-Lin Choua, Anil V. Nairc, Maria A. Battistonec, Teodor G. Paunescu˘ c, Maria Merkulovac, Sylvie Bretonc, Jill W. Verlanderd, Susan M. Walle,f, Dennis Brownc, Maurice B. Burga,1, and Mark A. Kneppera,1 aSystems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; bNephrology Clinic, National Cancer Center, Goyang, 10408, South Korea; cCenter for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; dDivision of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610; eDepartment of Medicine, Emory University School of Medicine, Atlanta, GA 30322; and fDepartment of Physiology, Emory University School of Medicine, Atlanta, GA 30322 Contributed by Maurice B. Burg, October 3, 2017 (sent for review June 22, 2017; reviewed by Andrew P. McMahon and George J. Schwartz) Prior RNA sequencing (RNA-seq) studies have identified complete count for a small fraction of the kidney parenchyma. Therefore, transcriptomes for most renal epithelial cell types. The exceptions methods were required for selective enrichment of the three cell are the cell types that make up the renal collecting duct, namely types from mouse kidney-cell suspensions. Here, we have identi- intercalated cells (ICs) and principal cells (PCs), which account for fied cell-surface markers for A-ICs, B-ICs, and PCs, allowing these only a small fraction of the kidney mass, but play critical physio- cell types to be enriched from kidney-cell suspensions by using logical roles in the regulation of blood pressure, extracellular fluid FACS.
    [Show full text]