TRP Channels in Mechanosensation: Direct Or Indirect Activation?

Total Page:16

File Type:pdf, Size:1020Kb

TRP Channels in Mechanosensation: Direct Or Indirect Activation? REVIEWS TRP channels in mechanosensation: direct or indirect activation? Adam P. Christensen and David P. Corey Abstract | Ion channels of the transient receptor potential (TRP) superfamily are involved in a wide variety of neural signalling processes, most prominently in sensory receptor cells. They are essential for mechanosensation in systems ranging from fruitfly hearing, to nematode touch, to mouse mechanical pain. However, it is unclear in many instances whether a TRP channel directly transduces the mechanical stimulus or is part of a downstream signalling pathway. Here, we propose criteria for establishing direct mechanical activation of ion channels and review these criteria in a number of mechanosensory systems in which TRP channels are involved. Osmoregulation Mechanically sensitive ion channels mediate a vast array — sensing force and passing the receptor current — or A homeostatic mechanism by of different cellular and organismic sensations, ranging does it have a necessary, but indirect, supporting role? which cells maintain their from the most basic that must occur in all living cells, Here we review the current literature using a set of criteria volume despite changes in such as osmoregulation, to the highly specialized, such designed to determine whether a candidate ion channel extracellular osmolarity. as hearing and touch. The channels that mediate these is directly activated by mechanical stimuli. Not all crite- sensations and how they convert a force stimulus ria can be met in all systems, so adequate proof in each into channel gating have remained largely a mystery. system may comprise satisfying only a subset of these Members of the transient receptor potential (TRP) family criteria. However, we hope that these criteria will help of ion channels have been implicated in a wide variety focus research in mechanosensation specifically for TRP of mechanical transduction processes in diverse organs channels and also, more generally, for all mechanically and species. sensitive ion channels. There are 33 TRP channel genes in mammals (nearly 60 in zebrafish, 30 in sea squirts, 24 in nematodes, 16 in Criteria to establish direct mechanical activation fruitflies and 1 in yeast)1. They are subdivided into seven In evaluating a mechanosensory system, we need to subfamilies on the basis of sequence similarity1 (FIG. 1). ask whether the receptor current is carried by an ion The channel subunits they encode have a molecular channel that is directly activated by the stimulus, and architecture similar to that of members of the voltage- whether a particular candidate protein participates in gated ion channel superfamily: they all include at least six that channel. transmembrane domains, as well as a number of other domains (FIG. 2), and four subunits assemble to form a Does mechanosensation involve direct activation of a functional ion channel. We will use the subunit name channel? Several tests may distinguish between mechani- to refer also to the channel it forms as a homotetramer. cally gated channels that act as force sensors themselves Some TRP channel subunits can form heterotetrameric and mechanically sensitive channels that are activated by channels as well, giving rise to a large variety of channels second messengers downstream of the true force sensors. with different gating and permeability properties2. Most First, the latency of the current elicited by the stimulus TRP channels are non-selective cation channels3. In addi- should be faster than known second-messenger systems, Department of Neurobiology, Harvard Medical School, tion to mechanosensation, TRP channels are involved in typically less than 5 milliseconds. Currently, many of the 220 Longwood Avenue, the transduction of a wide variety of other sensations, stimuli used to demonstrate mechanosensitivity, particu- Boston, Massachusetts with roles in vision, olfaction, taste, chemosensation and larly osmotic stimuli, lack the rapid risetime needed to 02115, USA. thermosensation4,5. determine a latency that is this fast. Second, the kinetics Correspondence to A.P.C. e-mail: However, the specific function of these, and other, ion of channel activation should depend on the amplitude of [email protected] channels in the process of mechanosensation is not fully the stimulus — a larger mechanical force should result doi:10.1038/nrn2149 understood6. Is the ion channel the primary transducer in faster channel opening. This is a simple consequence 510 | JULY 2007 | VOLUME 8 www.nature.com/reviews/neuro © 2007 Nature Publishing Group REVIEWS Mouse mmTRPM7 Frog mmTRPM6 Nematode mmTRPM3 mmTRPM8 Yeast mmTRPM1 dmNOMPC mmTRPM2 Fly mmTRPM4 (TRPN1) mmTRPM5 dm painless ceNOMPC dmTRP xINOMPC dmTRPL mmTRPC1 TRPM mmTRPC4 TRPN mmTRPC5 mmTRPA1 mmTRPC6 mmTRPML3 mmTRPC3 mmTRPML2 TRPA TRPC mmTRPC7 mmTRPC2 mmTRPML1 mmTRPV1 TRPML TRPV mmTRPV2 TRPP scTRPY1 ceLOV-1 mmTRPV3 mmTRPV4 mmPKD-REJ mmTRPV5 mmPKD2 (TRPP2) mmPKD2L2 mmTRPV6 ceOCR-3 mmPKD1 mmPKD1L2 mmPKD2L1 (TRPP5) (TRPP1) (TRPP3) dm inactive ceOCR-1 cePKD-2 ceOSM-9 ceOCR-2 mmPKD1L1 mmPKD1L3 dm nanchung ceOCR-4 (TRPP4) Figure 1 | Phylogeny of representative TRP channels. A phylogenic tree was generated in ClustalX by aligning the transmembrane domains of all 33 transient receptor potential (TRP) channels from mouse and some from other species. The seven main branches are denoted by circles at the branch roots. The letters and numbers following TRP denote TRP subfamily and member, respectively. Different species are indicated by colours and by prefixes. ce, Caenorhabditis elegans; dm, Drosophila melanogaster; mm, Mus musculus; sc, Saccharomyces cerevisiae; xl, Xenopus laevis. Scale bar represents 0.2 nucleotide substitutions per site. of a larger force lowering the energy barrier to channel Is the candidate protein mechanically sensitive? If a opening. Finally, there should be a mechanical correlate channel is directly activated by a mechanical stimulus of channel gating, such as an observable movement or then it should retain this mechanical gating property change in mechanical force, in the sensory cell or organ when expressed in other cells (as long as the force over the same range of stimuli as opens the channel. For stimulus is applied in an appropriate manner). For force to open a channel, some part of the channel or an example, if a channel operates by directly sensing lipid associated subunit that is closely coupled to the gating has tension, then the recombinant protein should retain its to move in response to force and this movement can be ability to be opened by pressure stimuli when placed detectable. This correlate will vary with differing gating in liposomes. Furthermore, in a heterologous expres- mechanisms (BOX 1) and might be difficult to measure sion system the forces necessary to gate the candidate but, when present, it is strong evidence for direct gating. channel should be comparable to the physiological This criterion, of course, addresses only the mode of stimulus. However, it should be noted that, if force is activation of the channel and not its molecular identity. conveyed to a channel by structural proteins that are present only in the receptor cell, or if required lipids Liposome A lipid vesicle that is artificially Does the candidate protein participate in mechanical or cofactors are present only in the receptor cell, acti- formed by sonicating lipids in transduction? To be a reasonable candidate for trans- vation in a heterologous expression system might be an aqueous solution. ducing the mechanosensory stimulus, a channel protein more difficult. must be in the right place and must be necessary for Heterologous expression mechanotransduction. Thus, the candidate channel Is the candidate protein a pore-forming subunit? Even system A system for studying the gene must be expressed in the receptor cell by the time if expressed at the right time and place, a candidate function of a protein in which a during development that the mechanically sensitive protein could be an accessory protein for the channel gene construct is transfected current is detected. The candidate channel protein but not part of the ion conduction pathway. If the can- into suitable host cells such as should be located at the site of mechanical transduc- didate protein forms the ion channel pore, the pharma- bacteria or cultured mammalian cells that will tion within the cell. Finally, blocking candidate protein cology and permeation properties of the mechanically produce the protein in a near- expression by knockdown or knockout should block the gated conductance in sensory cells should be similar native environment. mechanically activated conductance. to those of the heterologously expressed candidate. NATURE REVIEWS | NEUROSCIENCE VOLUME 8 | JULY 2007 | 511 © 2007 Nature Publishing Group REVIEWS LRRCT LRRNT WSC CLECT PKD LRR REJ LH2 mmPKD1 GPS mmPKD2 Coil dmTRPN1 ANKs TMs mmTRPA1 ceOSM-9 dm painless ceOCR-2 mmTRPV4 TRP dm nanchung mmTRPC1 scTRPY1 mmTRPML3 0 200 400 600 800 1000 aa Figure 2 | Domain structures of some TRP channels. The polycystic kidney disease (PKD1) group have much longer N-termini (connected by dashed line) than other transient receptor potential (TRP) channels. Strongly predicted transmembrane domains are represented by blue boxes and possible transmembrane domains are represented in light blue. The letters and numbers following TRP denote TRP subfamily and member, respectively. ANKs, ankyrin repeat domains; CLECT, C-type lectin domain; coil, coiled-coil domain; GPS, G-protein-coupled-receptor proteolytic-
Recommended publications
  • Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea
    8976 • The Journal of Neuroscience, November 18, 2020 • 40(47):8976–8993 Cellular/Molecular Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea Jorge Fernández-Trillo, Danny Florez-Paz, Almudena Íñigo-Portugués, Omar González-González, Ana Gómez del Campo, Alejandro González, Félix Viana, Carlos Belmonte, and Ana Gomis Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Alicante,Spain Mammalian Piezo2 channels are essential for transduction of innocuous mechanical forces by proprioceptors and cutaneous touch receptors. In contrast, mechanical responses of somatosensory nociceptor neurons evoking pain, remain intact or are only partially reduced in Piezo2-deficient mice. In the eye cornea, comparatively low mechanical forces are detected by polymodal and pure mecha- nosensory trigeminal ganglion neurons. Their activation always evokes ocular discomfort or pain and protective reflexes, thus being a unique model to study mechanotransduction mechanisms in this particular class of nociceptive neurons. Cultured male and female mouse mechano- and polymodal nociceptor corneal neurons display rapidly, intermediately and slowly adapting mechanically activated currents. Immunostaining of the somas and peripheral axons of corneal neurons responding only to mechanical force (pure mechano-nociceptor) or also exhibiting TRPV1 (transient receptor potential cation channel subfamily V member 1) immunoreactivity (polymodal nociceptor) revealed that they express
    [Show full text]
  • Trpc, Trpv and Vascular Disease | Encyclopedia
    TRPC, TRPV and Vascular Disease Subjects: Biochemistry Submitted by: Tarik Smani Hajami Definition Ion channels play an important role in vascular function and pathology. In this review we gave an overview of recent findings and discussed the role of TRPC and TRPV channels as major regulators of cellular remodeling and consequent vascular disorders. Here, we focused on their implication in 4 relevant vascular diseases: systemic and pulmonary artery hypertension, atherosclerosis and restenosis. Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. 1. Introduction Blood vessels are composed essentially of two interacting cell types: endothelial cells (ECs) from the tunica intima lining of the vessel wall and vascular smooth muscle cells (VSMCs) from tunica media of the vascular tube. Blood vessels are a complex network, and they differ according to the tissue to which they belong, having diverse cell expressions, structures and functions [1][2][3].
    [Show full text]
  • TRPM8 Channels and Dry Eye
    UC Berkeley UC Berkeley Previously Published Works Title TRPM8 Channels and Dry Eye. Permalink https://escholarship.org/uc/item/2gz2d8s3 Journal Pharmaceuticals (Basel, Switzerland), 11(4) ISSN 1424-8247 Authors Yang, Jee Myung Wei, Edward T Kim, Seong Jin et al. Publication Date 2018-11-15 DOI 10.3390/ph11040125 Peer reviewed eScholarship.org Powered by the California Digital Library University of California pharmaceuticals Review TRPM8 Channels and Dry Eye Jee Myung Yang 1,2 , Edward T. Wei 3, Seong Jin Kim 4 and Kyung Chul Yoon 1,* 1 Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; [email protected] 2 Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea 3 School of Public Health, University of California, Berkeley, CA 94720, USA; [email protected] 4 Department of Dermatology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; [email protected] * Correspondence: [email protected] Received: 17 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: Transient receptor potential (TRP) channels transduce signals of chemical irritation and temperature change from the ocular surface to the brain. Dry eye disease (DED) is a multifactorial disorder wherein the eyes react to trivial stimuli with abnormal sensations, such as dryness, blurring, presence of foreign body, discomfort, irritation, and pain. There is increasing evidence of TRP channel dysfunction (i.e., TRPV1 and TRPM8) in DED pathophysiology. Here, we review some of this literature and discuss one strategy on how to manage DED using a TRPM8 agonist.
    [Show full text]
  • Cryo-EM Structure of the Polycystic Kidney Disease-Like Channel PKD2L1
    ARTICLE DOI: 10.1038/s41467-018-03606-0 OPEN Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1 Qiang Su1,2,3, Feizhuo Hu1,3,4, Yuxia Liu4,5,6,7, Xiaofei Ge1,2, Changlin Mei8, Shengqiang Yu8, Aiwen Shen8, Qiang Zhou1,3,4,9, Chuangye Yan1,2,3,9, Jianlin Lei 1,2,3, Yanqing Zhang1,2,3,9, Xiaodong Liu2,4,5,6,7 & Tingliang Wang1,3,4,9 PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved 1234567890():,; in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a non- selective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π–π interactions, suggesting a potential PKD2L1 gating mechanism. 1 Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China. 2 School of Life Sciences, Tsinghua University, Beijing 100084, China. 3 Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China. 4 School of Medicine, Tsinghua University, Beijing 100084, China.
    [Show full text]
  • New Natural Agonists of the Transient Receptor Potential Ankyrin 1 (TRPA1
    www.nature.com/scientificreports OPEN New natural agonists of the transient receptor potential Ankyrin 1 (TRPA1) channel Coline Legrand, Jenny Meylan Merlini, Carole de Senarclens‑Bezençon & Stéphanie Michlig* The transient receptor potential (TRP) channels family are cationic channels involved in various physiological processes as pain, infammation, metabolism, swallowing function, gut motility, thermoregulation or adipogenesis. In the oral cavity, TRP channels are involved in chemesthesis, the sensory chemical transduction of spicy ingredients. Among them, TRPA1 is activated by natural molecules producing pungent, tingling or irritating sensations during their consumption. TRPA1 can be activated by diferent chemicals found in plants or spices such as the electrophiles isothiocyanates, thiosulfnates or unsaturated aldehydes. TRPA1 has been as well associated to various physiological mechanisms like gut motility, infammation or pain. Cinnamaldehyde, its well known potent agonist from cinnamon, is reported to impact metabolism and exert anti-obesity and anti-hyperglycemic efects. Recently, a structurally similar molecule to cinnamaldehyde, cuminaldehyde was shown to possess anti-obesity and anti-hyperglycemic efect as well. We hypothesized that both cinnamaldehyde and cuminaldehyde might exert this metabolic efects through TRPA1 activation and evaluated the impact of cuminaldehyde on TRPA1. The results presented here show that cuminaldehyde activates TRPA1 as well. Additionally, a new natural agonist of TRPA1, tiglic aldehyde, was identifed
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • TRPV4: a Physio and Pathophysiologically Significant Ion Channel
    International Journal of Molecular Sciences Review TRPV4: A Physio and Pathophysiologically Significant Ion Channel Tamara Rosenbaum 1,* , Miguel Benítez-Angeles 1, Raúl Sánchez-Hernández 1, Sara Luz Morales-Lázaro 1, Marcia Hiriart 1 , Luis Eduardo Morales-Buenrostro 2 and Francisco Torres-Quiroz 3 1 Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] (M.B.-A.); [email protected] (R.S.-H.); [email protected] (S.L.M.-L.); [email protected] (M.H.) 2 Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; [email protected] 3 Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07 Received: 3 May 2020; Accepted: 24 May 2020; Published: 28 May 2020 Abstract: Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.
    [Show full text]
  • Heteromeric TRP Channels in Lung Inflammation
    cells Review Heteromeric TRP Channels in Lung Inflammation Meryam Zergane 1, Wolfgang M. Kuebler 1,2,3,4,5,* and Laura Michalick 1,2 1 Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (M.Z.); [email protected] (L.M.) 2 German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany 3 German Center for Lung Research (DZL), 35392 Gießen, Germany 4 The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada 5 Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial bar- rier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protec- tive strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review. Keywords: heteromeric TRP assemblies; pulmonary inflammation; endothelial permeability; TRPC3/6; TRPV1/4; TRPC1/4 Citation: Zergane, M.; Kuebler, W.M.; Michalick, L. Heteromeric TRP Channels in Lung Inflammation. Cells 1. Introduction 2021, 10, 1654. https://doi.org Pulmonary microvascular endothelial cells are a key constituent of the blood air bar- /10.3390/cells10071654 rier that has to be extremely thin (<1 µm) to allow for rapid and efficient alveolo-capillary gas exchange.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Transcriptomic Profiling of Ca Transport Systems During
    cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels.
    [Show full text]
  • Using Drosophila to Study Mechanisms of Hereditary Hearing Loss Tongchao Li1,*, Hugo J
    © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm031492. doi:10.1242/dmm.031492 REVIEW Using Drosophila to study mechanisms of hereditary hearing loss Tongchao Li1,*, Hugo J. Bellen1,2,3,4,5 and Andrew K. Groves1,3,5,‡ ABSTRACT Keats and Corey, 1999; Kimberling et al., 2010; Mathur and Yang, Johnston’s organ – the hearing organ of Drosophila – has a very 2015). It is an autosomal recessive genetic disease, characterized by different structure and morphology to that of the hearing organs of varying degrees of deafness and retinitis pigmentosa-induced vision vertebrates. Nevertheless, it is becoming clear that vertebrate and loss. Although our understanding of genetic hearing loss has invertebrate auditory organs share many physiological, molecular advanced greatly over the past 20 years (Vona et al., 2015), there is a and genetic similarities. Here, we compare the molecular and cellular pressing need for experimental systems to understand the function features of hearing organs in Drosophila with those of vertebrates, of the proteins encoded by deafness genes. The mouse is well and discuss recent evidence concerning the functional conservation established as a model for studying human genetic deafness (Brown of Usher proteins between flies and mammals. Mutations in Usher et al., 2008), but other model organisms, such as the fruit fly genes cause Usher syndrome, the leading cause of human deafness Drosophila, might also provide convenient and more rapid ways to and blindness. In Drosophila, some Usher syndrome proteins appear assay the function of candidate deafness genes. to physically interact in protein complexes that are similar to those In mammals, mechanosensitive hair cells reside in a specialized described in mammals.
    [Show full text]
  • Submembraneous Microtubule Cytoskeleton: Biochemical and Functional Interplay of TRP Channels with the Cytoskeleton Chandan Goswami and Tim Hucho
    MINIREVIEW Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton Chandan Goswami and Tim Hucho Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany Keywords Much work has focused on the electrophysiological properties of transient actin; axonal guidence; cytoskeleton; growth receptor potential channels. Recently, a novel aspect of importance cone; myosin; pain; signalling complex; emerged: the interplay of transient receptor potential channels with the transient receptor potential channels; cytoskeleton. Recent data suggest a direct interaction and functional reper- tubulin; varicosity cussion for both binding partners. The bi-directionality of physical and Correspondence functional interaction renders therefore, the cytoskeleton a potent integra- C. Goswami, Department for Molecular tion point of complex biological signalling events, from both the cytoplasm Human Genetics, Max Planck Institute for and the extracellular space. In this minireview, we focus mostly on the Molecular Genetics, Ihnestrasse 73, 14195 interaction of the cytoskeleton with transient receptor potential vanilloid Berlin, Germany channels. Thereby, we point out the functional importance of cytoskeleton Fax: +49 30 8413 1383 components both as modulator and as modulated downstream effector. Tel: +49 30 8413 1243 E-mail: [email protected] The resulting implications for patho-biological situations are discussed. (Received 15 April 2008, revised 23 June 2008, accepted 30 July 2008) doi:10.1111/j.1742-4658.2008.06617.x The microtubule cytoskeleton plays a role in a variety with various membrane proteins, which often are part of cellular aspects such as division, morphology and of large protein complexes. The dynamic properties motility, as well as the transport of molecules and and the complexity of tubulin as an interacting protein organelles toward and from the cell membrane.
    [Show full text]