TRPC Channels in Sensory Systems

Total Page:16

File Type:pdf, Size:1020Kb

TRPC Channels in Sensory Systems TRPC Channels in Sensory Systems Kathryn Quick A thesis submitted for the degree of Doctor of Philosophy to University College London Wolfson Institute for Biomedical Sciences University College London 2011 Declaration I, Kathryn Quick, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. i Abstract Transient receptor potential canonical (TRPC) channels are a family of non-selective cation channels which have a wide range of physiological functions. In this thesis we used genetic approaches to investigate functional roles of TRPC3, TRPC6 We used the Cre/loxP system to delete TRPC3 exclusively from nociceptive neurons, using Nav1.8Cre, and from all dorsal root ganglion (DRG) neurons, using Advillin Cre. Inflammatory pain behavior was attenuated in both TRPC3 conditional null animals but acute mechanical, cold and thermal pain behavior was not affected. Microarray analysis identified a number of dysregulated pathways in the nociceptors of the TRPC3 conditional null mice, providing insights into inflammatory pain pathways. Given the similarity between TRPC channels we used a TRPC3/TRPC6 global double knockout to further investigate TRPC function. The TRPC3/TRPC6 double knockout mice were found to have attenuated mechanosensation specific to light touch, with no deficits in noxious mechanosensation, due to a reduction of rapidly adapting mechanically activated current in the small-medium DRG neurons. The TRPC3/TRPC6 double knockouts had no deficits in acute thermal or cold pain, or in neuropathic pain. The TRPC3/TRPC6 double knockouts were also behaviourally deaf, confirmed by auditory brainstem recordings. This work indicates a role for TRPC3 and TRPC6 in mechanosensation in sensory neurons and outer hair cells. ii Funding I thank the BBSRC and GlaxoSmithKline for funding this project. Publications Papers Raouf R, Quick K, Wood JN. (2010) Pain as a channelopathy. J Clin Invest 120(11):3745-52 iii 1 INTRODUCTION............................................................................................................1 1.1 PAIN AND NOCICEPTION ..............................................................................................1 1.2 NOCICEPTION AND DRG PRIMARY AFFERENT NEURONS .............................................2 1.2.1 Non- nociceptors.............................................................................................................................3 1.2.2 Nociceptors.....................................................................................................................................4 1.2.3 Silent nociceptors............................................................................................................................4 1.2.4 Gene expression in nociceptors ......................................................................................................5 1.2.5 Identification...................................................................................................................................6 1.2.6 Central projections .........................................................................................................................6 1.3 NOCICEPTION..............................................................................................................6 1.3.1 Mechanical .....................................................................................................................................6 1.3.2 Thermal...........................................................................................................................................8 1.3.3 Inflammatory pain ........................................................................................................................11 1.3.4 Neuropathic pain ..........................................................................................................................15 1.3.5 Central Processing .......................................................................................................................17 1.3.6 Voltage-gated sodium channels ....................................................................................................18 1.4 TRP CHANNELS ........................................................................................................20 1.4.1 Structure of TRP channels ............................................................................................................21 1.4.2 Transient Receptor Potential Canonical Channels.......................................................................22 1.4.3 Properties of TRPC channels........................................................................................................23 1.4.4 Modulation of TRPC channels......................................................................................................24 1.4.5 The TRPC3/6/7 subfamily.............................................................................................................25 1.4.6 Targeted gene deletion by homologous recombination in embryonic stem cells.......................... 31 1.4.7 Cre/loxP system ............................................................................................................................31 1.4.8 Flp/FRT system.............................................................................................................................32 1.5 AIMS .........................................................................................................................33 2 MATERIALS AND METHODS ..................................................................................34 2.1 MOLECULAR BIOLOGY .............................................................................................34 2.1.1 Gel electrophoresis.......................................................................................................................34 2.1.2 Polymerase Chain Reaction (PCR) ..............................................................................................34 2.1.3 Gel extraction ...............................................................................................................................35 2.1.4 DNA Digestions ............................................................................................................................35 2.1.5 Ligation of fragments into vectors ................................................................................................35 iv 2.1.6 Transformation .............................................................................................................................36 2.1.7 Preparation of DNA......................................................................................................................37 2.1.8 Sequencing.................................................................................................................................... 38 2.1.9 Southern Hybridization.................................................................................................................38 2.1.10 Genotyping............................................................................................................................... 39 2.1.11 RNA Extraction ........................................................................................................................41 2.1.12 cDNA synthesis ........................................................................................................................42 2.1.13 Reverse transcription Polymerase Chain Reaction..................................................................42 2.1.14 Quantitative PCR.....................................................................................................................42 2.2 BEHAVIOURAL PHENOTYPING ...................................................................................44 2.2.1 Rotarod .........................................................................................................................................44 2.2.2 Mechanical sensitivity...................................................................................................................44 2.2.3 Thermal sensitivity........................................................................................................................45 2.2.4 Cold plate .....................................................................................................................................46 2.2.5 Inflammatory pain models ............................................................................................................47 2.2.6 Neuropathic pain models..............................................................................................................49 2.2.7 Vestibular and hearing tests .........................................................................................................50 2.2.8 Preyer reflex test...........................................................................................................................50 2.2.9 Air righting ...................................................................................................................................50 2.2.10 Reaching response ...................................................................................................................51 2.2.11 Swim test ..................................................................................................................................51
Recommended publications
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • A Novel Resveratrol Analog: Its Cell Cycle Inhibitory, Pro-Apoptotic and Anti-Inflammatory Activities on Human Tumor Cells
    A NOVEL RESVERATROL ANALOG : ITS CELL CYCLE INHIBITORY, PRO-APOPTOTIC AND ANTI-INFLAMMATORY ACTIVITIES ON HUMAN TUMOR CELLS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Boren Lin May 2006 Dissertation written by Boren Lin B.S., Tunghai University, 1996 M.S., Kent State University, 2003 Ph. D., Kent State University, 2006 Approved by Dr. Chun-che Tsai , Chair, Doctoral Dissertation Committee Dr. Bryan R. G. Williams , Co-chair, Doctoral Dissertation Committee Dr. Johnnie W. Baker , Members, Doctoral Dissertation Committee Dr. James L. Blank , Dr. Bansidhar Datta , Dr. Gail C. Fraizer , Accepted by Dr. Robert V. Dorman , Director, School of Biomedical Sciences Dr. John R. Stalvey , Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………….………v LIST OF TABLES……………………………………………………………………….vii ACKNOWLEDGEMENTS….………………………………………………………….viii I INTRODUCTION….………………………………………………….1 Background and Significance……………………………………………………..1 Specific Aims………………………………………………………………………12 II MATERIALS AND METHODS.…………………………………………….16 Cell Culture and Compounds…….……………….…………………………….….16 MTT Cell Viability Assay………………………………………………………….16 Trypan Blue Exclusive Assay……………………………………………………...18 Flow Cytometry for Cell Cycle Analysis……………..……………....……………19 DNA Fragmentation Assay……………………………………………...…………23 Caspase-3 Activity Assay………………………………...……….….…….………24 Annexin V-FITC Staining Assay…………………………………..…...….………28 NF-kappa B p65 Activity Assay……………………………………..………….…29
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Submembraneous Microtubule Cytoskeleton: Biochemical and Functional Interplay of TRP Channels with the Cytoskeleton Chandan Goswami and Tim Hucho
    MINIREVIEW Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton Chandan Goswami and Tim Hucho Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany Keywords Much work has focused on the electrophysiological properties of transient actin; axonal guidence; cytoskeleton; growth receptor potential channels. Recently, a novel aspect of importance cone; myosin; pain; signalling complex; emerged: the interplay of transient receptor potential channels with the transient receptor potential channels; cytoskeleton. Recent data suggest a direct interaction and functional reper- tubulin; varicosity cussion for both binding partners. The bi-directionality of physical and Correspondence functional interaction renders therefore, the cytoskeleton a potent integra- C. Goswami, Department for Molecular tion point of complex biological signalling events, from both the cytoplasm Human Genetics, Max Planck Institute for and the extracellular space. In this minireview, we focus mostly on the Molecular Genetics, Ihnestrasse 73, 14195 interaction of the cytoskeleton with transient receptor potential vanilloid Berlin, Germany channels. Thereby, we point out the functional importance of cytoskeleton Fax: +49 30 8413 1383 components both as modulator and as modulated downstream effector. Tel: +49 30 8413 1243 E-mail: [email protected] The resulting implications for patho-biological situations are discussed. (Received 15 April 2008, revised 23 June 2008, accepted 30 July 2008) doi:10.1111/j.1742-4658.2008.06617.x The microtubule cytoskeleton plays a role in a variety with various membrane proteins, which often are part of cellular aspects such as division, morphology and of large protein complexes. The dynamic properties motility, as well as the transport of molecules and and the complexity of tubulin as an interacting protein organelles toward and from the cell membrane.
    [Show full text]
  • Download File
    STRUCTURAL AND FUNCTIONAL STUDIES OF TRPML1 AND TRPP2 Nicole Marie Benvin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 © 2017 Nicole Marie Benvin All Rights Reserved ABSTRACT Structural and Functional Studies of TRPML1 and TRPP2 Nicole Marie Benvin In recent years, the determination of several high-resolution structures of transient receptor potential (TRP) channels has led to significant progress within this field. The primary focus of this dissertation is to elucidate the structural characterization of TRPML1 and TRPP2. Mutations in TRPML1 cause mucolipidosis type IV (MLIV), a rare neurodegenerative lysosomal storage disorder. We determined the first high-resolution crystal structures of the human TRPML1 I-II linker domain using X-ray crystallography at pH 4.5, pH 6.0, and pH 7.5. These structures revealed a tetramer with a highly electronegative central pore which plays a role in the dual Ca2+/pH regulation of TRPML1. Notably, these physiologically relevant structures of the I-II linker domain harbor three MLIV-causing mutations. Our findings suggest that these pathogenic mutations destabilize not only the tetrameric structure of the I-II linker, but also the overall architecture of full-length TRPML1. In addition, TRPML1 proteins containing MLIV- causing mutations mislocalized in the cell when imaged by confocal fluorescence microscopy. Mutations in TRPP2 cause autosomal dominant polycystic kidney disease (ADPKD). Since novel technological advances in single-particle cryo-electron microscopy have now enabled the determination of high-resolution membrane protein structures, we set out to solve the structure of TRPP2 using this technique.
    [Show full text]
  • Topological Network Analysis of Differentially Expressed Genes In
    CANCER GENOMICS & PROTEOMICS 12 : 153-166 (2015) Topological Network Analysis of Differentially Expressed Genes in Cancer Cells with Acquired Gefitinib Resistance YOUNG SEOK LEE 1, SUN GOO HWANG 2, JIN KI KIM 1, TAE HWAN PARK 3, YOUNG RAE KIM 1, HO SUNG MYEONG 1, KANG KWON 4, CHEOL SEONG JANG 2, YUN HEE NOH 1 and SUNG YOUNG KIM 1 1Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Republic of Korea; 2Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea; 3Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Republic of Korea; 4School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea Abstract. Background/Aim: Despite great effort to elucidate into the complex mechanism of AGR and to novel gene the process of acquired gefitinib resistance (AGR) in order to expression signatures useful for further clinical studies. develop successful chemotherapy, the precise mechanisms and genetic factors of such resistance have yet to be elucidated. Although chemotherapy is the most common treatment for Materials and Methods: We performed a cross-platform meta- various cancer types, the development of acquired resistance analysis of three publically available microarray datasets to anticancer drugs remains a serious problem, leading to a related to cancer with AGR. For the top 100 differentially majority of patients who initially responded to anticancer expressed genes (DEGs), we clustered functional modules of drugs suffering the recurrence or metastasis of their cancer (1- hub genes in a gene co-expression network and a protein- 3). Acquired drug resistance (ADR) is known to have a multi- protein interaction network.
    [Show full text]
  • TRPA1 Is a Candidate for the Mechanosensitive Transduction Channel of Vertebrate Hair Cells
    articles TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells David P. Corey1,2*, Jaime Garcı´a-An˜overos4*, Jeffrey R. Holt5*, Kelvin Y. Kwan1,2*, Shuh-Yow Lin1,6*, Melissa A. Vollrath1,2*, Andrea Amalfitano8, Eunice L.-M. Cheung1, Bruce H. Derfler1,2, Anne Duggan4, Gwe´nae¨lle S. G. Ge´le´oc5, Paul A. Gray1,3, Matthew P. Hoffman9, Heidi L. Rehm7, Daniel Tamasauskas1,2 & Duan-Sun Zhang1,2 1Department of Neurobiology and 2Howard Hughes Medical Institute, Harvard Medical School, and 3Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA 4Departments of Anesthesiology, Neurology and Physiology, Northwestern University Institute for Neurosciences, Chicago, Illinois 60611, USA 5Departments of Neuroscience and Otolaryngology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA 6Department of Biology, Massachusetts Institute of Technology, and 7Laboratory for Molecular Medicine, Harvard-Partners Genome Center, Cambridge, Massachusetts 02139, USA 8Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27705, USA 9Matrix and Morphogenesis Unit, CDBRB, NIDCR, NIH, Bethesda, Maryland 20892, USA * These authors contributed equally to this work ........................................................................................................................................................................................................................... Mechanical deflection of the sensory hair bundles of receptor
    [Show full text]
  • Identification of Protein Partners for Nibp, a Novel Nik-And Ikkb-Binding Protein Through Experimental, Computational and Bioinformatics Techniques
    IDENTIFICATION OF PROTEIN PARTNERS FOR NIBP, A NOVEL NIK-AND IKKB-BINDING PROTEIN THROUGH EXPERIMENTAL, COMPUTATIONAL AND BIOINFORMATICS TECHNIQUES A Thesis Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE by Sombudha Adhikari August 2013 Thesis Approvals: Mohammad. F. Kiani, Ph.D., Thesis Advisor, College of Engineering Wenhui Hu, M.D., Ph.D., School of Medicine Roland Dunbrack, Ph.D, Fox Chase Cancer Center Peter Lelkes, Ph.D., College of Engineering ABSTRACT Identification of protein partners for NIBP, a novel NIK- and IKK β-binding protein through experimental, computational and bioinformatics techniques NIBP is a prototype member of a novel protein family. It forms a novel subcomplex of NIK-NIBP-IKK β and enhances cytokine-induced IKK β-mediated NF κB activation. It is also named TRAPPC9 as a key member of trafficking particle protein (TRAPP) complex II, which is essential in trans -Golgi networking (TGN). The signaling pathways and molecular mechanisms for NIBP actions remain largely unknown. The aim of this research is to identify potential proteins interacting with NIBP, resulting in the regulation of NF κB signaling pathways and other unknown signaling pathways. At Dr. Wenhui Hu’s lab in the Department of Neuroscience, Temple University, sixteen partner proteins were experimentally identified that potentially bind to NIBP. NIBP is a novel protein with no entry in the Protein Data Bank. From a computational and bioinformatics standpoint, we use prediction of secondary structure and protein disorder as well as homology-based structural modeling approaches to create a hypothesis on protein-protein interaction between NIBP and the partner proteins.
    [Show full text]
  • Original Article ITGA8 Accelerates Migration and Invasion of Myeloma Cells in Multiple Myelomas
    Int J Clin Exp Med 2021;14(2):1126-1132 www.ijcem.com /ISSN:1940-5901/IJCEM0122176 Original Article ITGA8 accelerates migration and invasion of myeloma cells in multiple myelomas Mengmeng Cui1, Jiangfang Feng1, Xuezhong Gu2, Zhuowei Zhang3, Junxia Zhao1, Hongmei Chai1, Jing Li4, Zheng Xu5 1Department of Hematology, Jincheng General Hospital, Jincheng, Shanxi Province, China; 2Department of He- matology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan Province, China; 3Personnel Depart- ment of Shanxi Medical University, Taiyuan, Shanxi Province, China; 4Department of Oncology, Jincheng General Hospital, Jincheng, Shanxi Province, China; 5Department of Orthopaedics, Jincheng General Hospital, Jincheng, Shanxi Province, China Received September 11, 2020; Accepted October 14, 2020; Epub February 15, 2021; Published February 28, 2021 Abstract: Multiple myeloma is cancer of the plasma cells and is the second most common cancer of the blood system, which is characterized by increased calcium levels, renal insufficiency, anemia, bone disease, and suscep- tibility to infection due to suppression of immunoglobulin production. Early diagnosis of multiple myeloma is difficult as it has no symptoms until it reaches an advanced stage. Therefore, key genes involved in the pathogenesis of multiple myeloma might be significant markers for early diagnosis and treatment of the disease. We analyzed the differentially expressed genes in patients with multiple myeloma using sequencing microarrays from the GEO da- tabase. Combined with GO and KEGG analysis, we identified ITGA8 as a key target in the pathogenesis of multiple myeloma, and further verified the differential expression of ITGA8 in myeloma cell lines by rtPCR experiments. Our study contributes to a better understanding of the development of multiple myeloma and advances the application of bioinformatics in clinical diagnosis.
    [Show full text]
  • Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
    1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704
    [Show full text]
  • Page 1 Exploring the Understudied Human Kinome For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Exploring the understudied human kinome for research and therapeutic opportunities Nienke Moret1,2,*, Changchang Liu1,2,*, Benjamin M. Gyori2, John A. Bachman,2, Albert Steppi2, Rahil Taujale3, Liang-Chin Huang3, Clemens Hug2, Matt Berginski1,4,5, Shawn Gomez1,4,5, Natarajan Kannan,1,3 and Peter K. Sorger1,2,† *These authors contributed equally † Corresponding author 1The NIH Understudied Kinome Consortium 2Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, USA 3 Institute of Bioinformatics, University of Georgia, Athens, GA, 30602 USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 5 Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA Key Words: kinase, human kinome, kinase inhibitors, drug discovery, cancer, cheminformatics, † Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] 617-432-6901 ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Nienke Moret 0000-0001-6038-6863 Changchang Liu 0000-0003-4594-4577 Ben Gyori 0000-0001-9439-5346 John Bachman 0000-0001-6095-2466 Albert Steppi 0000-0001-5871-6245 Page 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted June 30, 2020.
    [Show full text]
  • Permeation, Regulation and Control of Expression of TRP Channels by Trace Metal Ions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Pflugers Arch - Eur J Physiol (2015) 467:1143–1164 DOI 10.1007/s00424-014-1590-3 INVITED REVIEW Permeation, regulation and control of expression of TRP channels by trace metal ions Alexandre Bouron & Kirill Kiselyov & Johannes Oberwinkler Received: 15 April 2014 /Revised: 10 July 2014 /Accepted: 13 July 2014 /Published online: 10 August 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Transient receptor potential (TRP) channels form a TRPML channels . Channel regulation . Transition metals . diverse family of cation channels comprising 28 members in Zinc .Cadmium .Copper .Magnesium .Nickel .Iron .Lead . mammals. Although some TRP proteins can only be found on Barium . Strontium . Manganese . Lanthanum . Gadolinium intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their Introduction involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing num- Some trace metals like zinc (Zn2+), iron (Fe2+/Fe3+)orcopper ber of studies have started to expand our understanding of (Cu+/Cu2+) are involved in a wide diversity of biological these proteins by showing that they also transport other bio- processes. Other metal ions like cadmium (Cd2+) or lead logically relevant metal ions like zinc, magnesium, manga- (Pb2+) have only toxic properties, at least in vertebrate cells. nese and cobalt. In addition to this newly recognized property, The molecular mechanisms by which these cations enter into the activity and expression of TRP channels can be regulated cells are still not fully understood.
    [Show full text]