Qt8w02g9n8.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Qt8w02g9n8.Pdf UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Abiotic and biotic factors affecting light brown apple moth, Epiphyas postvittana, in California Permalink https://escholarship.org/uc/item/8w02g9n8 Author Buergi, Linda Patricia Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California ABIOTIC AND BIOTIC FACTORS AFFECTING LIGHT BROWN APPLE MOTH, EPIPHYAS POSTVITTANA, IN CALIFORNIA by Linda P. Buergi A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor George K. Roderick Professor Wayne P. Sousa Fall 2012 Abiotic and biotic factors affecting light brown apple moth, Epiphyas postvittana, in California © 2012 by Linda P. Buergi ABSTRACT Abiotic and biotic factors affecting light brown apple moth, Epiphyas postvittana, in California by Linda P. Buergi Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair With the increase of globalization, the introduction of exotic species into new regions has become a worldwide threat for biodiversity and agricultural production. However, invasiveness of alien species depends on the extent to which abiotic and biotic factors affect the impact of exotic species in a new region. The Light Brown Apple Moth (LBAM), Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is a leafroller native to southeastern Australia that was discovered in California in 2006. At the time of its discovery, little was known about how abiotic and biotic factors might limit its distribution and impact in California and North America. I therefore measured high and low temperature tolerance of LBAM in laboratory studies and found that it exhibited only moderate tolerance of extreme temperatures, which may limit its potential distribution in California and North America. I also monitored LBAM populations in the field and measured parasitism rates over a four year study period to determine the influence of of biotic resistance and to provide baseline population data for use in management decisions. I found that LBAM populations were cyclic or decreasing, had strongly overlapping generations and produced three generations annually in San Francisco and and four in Santa Cruz. The parasitoid assemblage of LBAM in California consisted of many species and parasitism rates were unusually high, but provided no evidence of an ability to regulate LBAM populations. I also found that low density LBAM populations did not exhibit demographic Allee effects, but instead populations of all sizes exhibited strong negative density dependence. I also studied life history parameters of Meteorus ictericus, the most abundant parasitoid of LBAM in California, and found that it has a number of traits that could account for its dominance in the parasitoid assemblage. It was able to attack and develop in a wide range of host larval instars, had a preference for late larval instars, a female only lifestyle, a low generation time ratio in relation to LBAM, and similar temperature maxima and minima for development. However, M. ictericus exhibited an unusually low lifetime 1 fecundity, which could pose an important constraint on its potential to suppress LBAM populations. Overall, the results of these studies have provided valuable insights that can be used to better understand the potential geographic distribution of LBAM, and to better inform management decisions. In addition, I suggest that the high level of resistance from resident parasitoids on LBAM in California, in combination with other pest management strategies, could prevent the widespread losses from agricultural crops that were originally anticipated in the United States. 2 Dedication To my husband, for his love and support, to my parents and brother, for their encouragement and for believing in me, and to my grandpa, for getting me started on this path. i TABLE OF CONTENTS ABSTRACT ........................................................................................................................................... 1 TABLE OF CONTENTS .......................................................................................................................... ii ACKNOWLEDGEMENTS ..................................................................................................................... iv INTRODUCTION .................................................................................................................................. 1 CHAPTER 1: COLD TOLERANCE OF THE OVERWINTERING LARVAL INSTARS OF LIGHT BROWN APPLE MOTH, EPIPHYAS POSTVITTANA 1.1 ABSTRACT .............................................................................................................................. 4 1.2 INTRODUCTION ..................................................................................................................... 5 1.3 MATERIALS AND METHODS .................................................................................................. 6 1.4 RESULTS................................................................................................................................. 9 1.5 DISCUSSION ........................................................................................................................... 9 1.6 TABLES ................................................................................................................................. 12 1.7 FIGURES ............................................................................................................................... 14 CHAPTER 2: ECOLOGICALLY RELEVANT MEASURES OF THE PHYSIOLOGICAL TOLERANCE OF LIGHT BROWN APPLE MOTH, EPIPHYAS POSTVITTANA, TO HIGH TEMPERATURE EXTREMES 2.1 ABSTRACT ............................................................................................................................ 16 2.2 INTRODUCTION ................................................................................................................... 17 2.3 MATERIALS AND METHODS ................................................................................................ 19 2.4 RESULTS............................................................................................................................... 22 2.5 DISCUSSION ......................................................................................................................... 23 2.6 TABLES ................................................................................................................................. 28 2.7 FIGURES ............................................................................................................................... 30 CHAPTER 3: ABUNDANCE, AGE STRUCTURE, AND VOLITINISM OF LIGHT BROWN APPLE MOTH POPULATIONS IN CALIFORNIA 3.1 ABSTRACT ............................................................................................................................ 32 3.2 INTRODUCTION ................................................................................................................... 33 3.3 MATERIALS AND METHODS ................................................................................................ 34 3.4 RESULTS............................................................................................................................... 36 3.5 DISCUSSION ......................................................................................................................... 38 3.6 FIGURES ............................................................................................................................... 41 ii CHAPTER 4: LACK OF ENEMY RELEASE FOR AN INVASIVE LEAFROLLER IN CALIFORNIA: TEMPORAL PATTERNS AND INFLUENCE OF HOST PLANT ORIGIN 4.1 ABSTRACT ............................................................................................................................ 45 4.2 INTRODUCTION ................................................................................................................... 46 4.3 MATERIALS AND METHODS ................................................................................................ 47 4.4 RESULTS............................................................................................................................... 50 4.5 DISCUSSION ......................................................................................................................... 52 4.6 TABLES ................................................................................................................................. 57 4.7 FIGURES ............................................................................................................................... 59 CHAPTER 5: ALLEE EFFECTS AND POPULATION REGULATION: A TEST FOR BIOTIC RESISTANCE AGAINST AN INVASIVE LEAFROLLER BY RESIDENT PARASITOIDS 5.1 ABSTRACT ............................................................................................................................ 63 5.3 INTRODUCTION ................................................................................................................... 64 5.4 MATERIALS AND METHODS ................................................................................................ 65 5.5 RESULTS..............................................................................................................................
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Pollination Ecosystem Services to Onion Hybrid Seed Crops in South Africa
    Pollination Ecosystem Services to Onion Hybrid Seed Crops in South Africa by Mariëtte Rieks Brand Dissertation presented for the degree of Doctor of Philosophy (Science) in the Faculty of AgriSciences at Stellenbosch University Promoter: Prof.Michael J. Samways Co-promoters: Dr. Ruan Veldtman Dr. Jonathan F. Colville April 2014 Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. April 2014 Copyright © 2014 Stellenbosch University All rights reserved Abstract Insect pollination contributes in various degrees toward the production of a variety of agricultural crops that ensure diversity and nutritional value in the human diet. Although managed honeybees (Apis mellifera L.) are still the most economically valuable pollinators of monoculture crops cultivated globally, wild pollinator communities can contribute substantially toward crop pollination through pollination ecosystem services sourced from neighbouring natural habitats. Pollination ecosystem services are thus valuable and can motivate for the protection of natural ecosystems hosting diverse insect pollinator communities. F1 onion hybrid seed production is entirely dependent on high insect pollinator activity to ensure cross pollination, seed set and profitable seed yields. Data was collected on 18 onion hybrid seed crops grown in the semi-arid Klein Karoo and southern Karoo regions of the Western Cape, South Africa. These two main production regions are located within the Succulent Karoo biome, recognized as a global biodiversity hotspot of especially high plant diversity.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Revision of the Genus Apophua Morley, 1913, from Japan (Hymenoptera, Ichneumonidae, Banchinae)
    Zootaxa 3784 (5): 501–527 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3784.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:6640D1B6-E304-4C6B-8E36-71F8FB2C347F Revision of the genus Apophua Morley, 1913, from Japan (Hymenoptera, Ichneumonidae, Banchinae) KYOHEI WATANABE1 & KAORU MAETO2 1Kanagawa Prefectural Museum of Natural History, Iriuda 499, Odawara, Kanagawa 250–0031, Japan. E-mail: [email protected] 2Laboratory of Insect Biodiversity and Ecosystem Science, Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai- cho, Nada-ku, Kobe, 657–8501 Japan. E-mail: [email protected] Abstract Japanese species of the genus Apophua Morley, 1913, are revised. Eleven species are found from Japan and two of them, A. elegans sp. nov. and A. yamato sp. nov., are newly described. Distribution data and an updated key to Japanese species are provided. Key words: Far East Asia, Glyptini, new species, parasitoid, taxonomy Introduction The genus Apophua Morley, 1913, is a medium-sized taxon of ichneumonid wasps of the tribe Glyptini, subfamily Banchinae, which contains 36 described species from the Afrotropical (13 spp.), Eastern Palaearctic (10), Oriental (10), Western Palaearctic (5), Nearctic (2), and Australasian (2) regions (Yu et al., 2012). The species in this genus are known as koinobiont endoparasitoids of lepidopteran larvae, particularly of leaf rollers (e.g. Tortricidae), and include some important natural enemies of forest pests (Kamijo, 1973; Momoi et al., 1975). We have studied the Japanese species of Apophua as part of a review of the Japanese Glyptini and have recognized 11 species.
    [Show full text]
  • Conservation Assessment for the Kansan Spikerush Leafhopper (Dorydiella Kansana Beamer)
    Conservation Assessment For The Kansan spikerush leafhopper (Dorydiella kansana Beamer) USDA Forest Service, Eastern Region January 11, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 1 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Diptera: Tachinidae) on Parasitoid Fertility and Host Mortality
    Biological Control 64 (2013) 195–202 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Influence of oviposition strategy of Nemorilla pyste and Nilea erecta (Diptera: Tachinidae) on parasitoid fertility and host mortality Nik G. Wiman ⇑, Vincent P. Jones Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Ave., Wenatchee, WA 98801, United States highlights graphical abstract " Nemorilla pyste is a tachinid parasitoid that oviposits onto hosts. " Nilea erecta is a tachinid parasitoid that ovolarviposits onto substrate around hosts. " The influence of host density on parasitoid fertility and host mortality was examined. " Species had similar fertilities, but N. erecta caused higher host mortality. " Increased host mortality from N. erecta was attributed to superparasitism. article info abstract Article history: This study examined fertility of the tachinid (Diptera) parasitoids Nemorilla pyste (Walker) and Nilea Received 4 January 2012 erecta (Coquillett), and mortality of the host, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Accepted 18 December 2012 These are common parasitoids of mature C. rosaceana larvae in apple and sweet cherry orchards in central Available online 27 December 2012 Washington where C. rosaceana is an important pest. The parasitoids have similar phenology and use the same stages of the host, but their modes of attack and development in the host differ. N. pyste oviposits on Keywords: the host and develops gregariously, while N. erecta ovolarviposits on foliage near the host and develops Tachinidae solitarily. Life tables were used to compare adult longevity and fertility of these flies at three different Parasitoid host densities in laboratory cage experiments.
    [Show full text]