Periodontal Wound Healing and Tissue Regeneration: a Narrative Review Pharmaceuticals Young-Dan Cho, Kyoung-Hwa Kim, Yong-Moo Lee, Young Ku and Yang-Jo Seol *

Total Page:16

File Type:pdf, Size:1020Kb

Periodontal Wound Healing and Tissue Regeneration: a Narrative Review Pharmaceuticals Young-Dan Cho, Kyoung-Hwa Kim, Yong-Moo Lee, Young Ku and Yang-Jo Seol * Review Periodontal Wound Healing and Tissue Regeneration: A Narrative Review pharmaceuticals Young-Dan Cho, Kyoung-Hwa Kim, Yong-Moo Lee, Young Ku and Yang-Jo Seol * Review Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University Periodontal Woundand Seoul Healing National University and Dental Tissue Hospital, Regeneration: Seoul 03080, Korea; [email protected] (Y.-D.C.); A Narrative [email protected] (K.-H.K.); [email protected] (Y.-M.L.); [email protected] (Y.K.) * Correspondence: [email protected]; Tel.: +82-2-2072-0308 Young-Dan Cho, Kyoung-Hwa Kim , Yong-Moo Lee, Young Ku and Yang-Jo Seol * Abstract: Periodontal disease is a major public health issue, and various periodontal therapies have beenDepartment performed of Periodontology, to regenerate School of periodontal Dentistry and Dental tissues Research. The Institute, periodontium Seoul National is Universitya complex and structure com- posedSeoul National of specialized University Dentaltissues Hospital, that support Seoul 03080, the Korea; teeth, [email protected] and most periodontal (Y.-D.C.); surgeries are invasive pro- [email protected] (K.-H.K.); [email protected] (Y.-M.L.); [email protected] (Y.K.) cedures,* Correspondence: including [email protected]; a resection Tel.: of +82-2-2072-0308 the gingiva or the alveolar bone. The periodontal wound healing process is slightly different from cutaneous wound healing and is similar to fetal healing, being almostAbstract: scar-free.Periodontal The disease aim of is athis major review public article health issue,is to andprovide various an periodontal overview therapiesof periodontal wound have been performed to regenerate periodontal tissues. The periodontium is a complex structure healing and discuss various surgical and pharmaceutical approaches to achieve stable wound heal- composed of specialized tissues that support the teeth, and most periodontal surgeries are invasive ingprocedures, and improve including the a resectiontreatment of the outc gingivaomes. or theIn addition, alveolar bone. detrimental The periodontal and woundlimiting healing factors that induce aprocess compromised is slightly prognosis different from are cutaneous discussed, wound along healing with and the is perspective similar to fetal and healing, future being direction for suc- Citation: Cho, Y.-D.; Kim, K.-H.; cessfulalmost scar-free.periodontal The aimtissue of thisregeneration. review article is to provide an overview of periodontal wound Lee, Y.-M.; Ku, Y.; Seol, Y.-J. Perio- healing and discuss various surgical and pharmaceutical approaches to achieve stable wound healing dontal Wound Healing and Tissue Keywords:and improve periodontium; the treatment outcomes. periodontal In addition, tissue detrimental regeneration; and limiting wound factors healing that induce a Regeneration: A Narrative Review. compromised prognosis are discussed, along with the perspective and future direction for successful Pharmaceuticals 2021, 14, x. periodontal tissue regeneration. https://doi.org/10.3390/xxxxx Keywords: periodontium; periodontal tissue regeneration; wound healing Citation: Cho, Y.-D.; Kim, K.-H.; Lee, Academic Editor: Yayoi Kawano, 1. Introduction Y.-M.; Ku, Y.; Seol, Y.-J. Periodontal Viorica Patrulea,Wound Healing Mitsutoshi and Tissue Sato, The periodontium acts as a supporting apparatus for the teeth and is a complex struc- Olivier JordanRegeneration: and Takehisa A Narrative Han- Review. ture1. Introduction consisting of soft and hard tissues [1]. The main functions of the periodontium are to awa Pharmaceuticals 2021, 14, 456. ensureThe that periodontium the teeth actsare asattached a supporting to the apparatus bones; to for protect the teeth the and nerves, is a complex blood vessels, and https://doi.org/10.3390/ph14050456 teethstructure from consisting injuries; of softand and to hardprovide tissues a [barrier1]. The main to the functions underlying of the periodontium structures from the oral Received: 15 April 2021 are to ensure that the teeth are attached to the bones; to protect the nerves, blood vessels, Academic Editors: Yayoi Kawano, microbiome. Soft tissue includes the gingiva, mucosa, and periodontal ligament (PDL), Accepted: 11 May 2021 and teeth from injuries; and to provide a barrier to the underlying structures from the oral Viorica Patrulea, Mitsutoshi Sato, andmicrobiome. hard tissue Soft tissueincludes includes the cementum the gingiva, mucosa,and the and alveolar periodontal bone ligament (Figure (PDL),1). Published:Olivier 12 May Jordan 2021 and Takehisa Hanawa and hard tissue includes the cementum and the alveolar bone (Figure1). Received: 15 April 2021 Publisher’s Note: MDPI stays neu- Accepted: 11 May 2021 tral with regard to jurisdictional Published: 12 May 2021 claims in published maps and institu- tional affiliations.Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. This article is an open access article Copyright: © 2021 by the authors. distributedLicensee under MDPI, the terms Basel, and Switzerland. con- ditions ofThis the article Creative is an Commons open access At- article tributiondistributed (CC BY) license under (http://crea- the terms and conditions of the Creative Commons tivecommons.org/licenses/by/4.0/). Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ FigureFigure 1.1.The The structure structure of periodontium. of periodontium. 4.0/). Pharmaceuticals 2021, 14, 456. https://doi.org/10.3390/ph14050456 https://www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2021, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2021, 14, 456 2 of 17 The gingiva is a covering tissue that protects the alveolar bone from external stimuli such as microbial attack or mechanical force and consists of epithelial and connective tissues. The general risk factor of periodontal disease is oral microbial infection, which can induce inflammation of the gingiva, and if not treated on time, it affects the periodontium in general [2,3]. Periodontal disease is the most common oral disease with a high prevalence of 20–50% of the world population [4]. Gingivitis and periodontitis are typical periodon- tal diseases [1]. Gingivitis is the mildest form of periodontal disease, which is limited to gingival inflammation and is reversible [5]. Conversely, periodontitis is irreversible, accompanied by alveolar bone defect, can induce tooth mobility when untreated, and finally, leads to tooth extraction [6]. Periodontal defect is caused by chronic pathological conditions, such as periodontitis, and exhibits the loss of gingiva, periodontal ligament, and alveolar bone. Various procedures to support the regeneration of the periodontal tissue as well as therapeutics to enhance the wound healing process have been studied. A specialized oral environment with saliva and oral microorganisms can affect the defect for- mation and wound healing process. The objective of this review is to provide an overview of periodontal wound healing and discuss the complications and factors influencing the healing process and therapeutics for improving periodontal wound healing. 2. Normal Wound Healing Wound healing is a dynamic process, which has been a challenge in the clinical setting after treatment. Much effort has been focused on wound management for developing healing techniques and new treatment approaches. Basically, the wound healing pro- cess consists of four distinct but overlapping phases [7]: 1. hemostasis and coagulation, 2. inflammation, 3. cell proliferation, and 4. wound remodeling and maturation (Figure2). This general principle of wound healing also applies to periodontal wound healing [8]. The wound healing procedure involves several types of cells, extracellular matrix, cytokines, and growth factors. Understanding wound healing with regard to various aspects of cells, molecules, physiology, and biochemistry is important to regenerate tissues that are functionally and structurally indistinguishable from the original tissue and not repaired tissue with fibrotic scars. If there is an injury that damages the vessel, hemorrhage is the first process to begin on the wound site. Under normal conditions, a molecular machinery for blood clot formation is immediately operated, protecting the injury site and serving the provisional matrix for cell migration. Blood clot formation continues to the initial in- flammatory stage, in which inflammatory cells, including polymorphonuclear neutrophils and monocytes, are activated. These cells clean the wounds of necrotic tissue and bacteria and secrete various enzymes for wound debridement. This inflammatory response shifts into the late phase where macrophages move into the wound area and secrete cytokines or growth factors for the cells involved in the wound healing process. Following the inflammatory stage, granulation tissue formation is initiated with collagen accumulation. Cytokines and growth factors by macrophages induce the migration and proliferation of fibroblasts and endothelial cells into the wound site. This cell-rich granulation tissue activates the phase of matrix formation and maturation. Fibroblasts replace the provisional extracellular matrix by producing a new collagen-rich matrix, and the endothelial cells are involved in angiogenesis for vascularization. Subsequently, wound epithelization is conducted by epithelial cells from the basal layer.
Recommended publications
  • Effects of Direct Dental Restorations on Periodontium - Clinical and Radiological Study
    Effects of direct dental restorations on periodontium - clinical and radiological study Luiza Ungureanu, Albertine Leon, Cristina Nuca, Corneliu Amariei, Doru Petrovici Constanta, Romania Summary The authors have performed a clinical study - 175 crown obturations of class II, II, V and cavities have been analyzed in 125 patients, following their impact on the marginal periodontium and a radi- ological study - consisting of the analysis of 108 proximal amalgam obturations and of their nega- tive effects on the profound periodontium. The results showed alarming percentages (over 80% in the clinical examination and 87% in the radiological examination of improper restorations, which generated periodontal alterations, from gingivitis to chronic marginal progressive periodontitis. The percentage of 59.26% obturations that triggered different degrees of osseous lysis imposed the need of knowing the negative effects of direct restorations on the periodontium and also the impor- tance of applying the specific preventive measures. Key words: dental anatomy, gingival embrasure contact area, under- and over sizing, cervical exten- sion, osseous lysis. Introduction the antagonist tooth can trigger enlargement of the contact point during functional movements. Dental restorations and periodontal health This allows interdental impact of foodstuff, with are closely related: periodontal health is needed devastating consequent effects on interproximal for the correct functioning of all restorations periodontal tissues. while the functional stimulation due to dental Marginal occlusal ridges must be placed restorations is essential for periodontal protection. above the proximal contact surface, and must be Coronal obturations with improper occlusal rounded and smooth so as to allow the access of modeling, oversized proximally or on the dental floss.
    [Show full text]
  • Long-Term Uncontrolled Hereditary Gingival Fibromatosis: a Case Report
    Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report Abstract Hereditary gingival fibromatosis (HGF) is a rare condition characterized by varying degrees of gingival hyperplasia. Gingival fibromatosis usually occurs as an isolated disorder or can be associated with a variety of other syndromes. A 33-year-old male patient who had a generalized severe gingival overgrowth covering two thirds of almost all maxillary and mandibular teeth is reported. A mucoperiosteal flap was performed using interdental and crevicular incisions to remove excess gingival tissues and an internal bevel incision to reflect flaps. The patient was treated 15 years ago in the same clinical facility using the same treatment strategy. There was no recurrence one year following the most recent surgery. Keywords: Gingival hyperplasia, hereditary gingival hyperplasia, HGF, hereditary disease, therapy, mucoperiostal flap Citation: S¸engün D, Hatipog˘lu H, Hatipog˘lu MG. Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report. J Contemp Dent Pract 2007 January;(8)1:090-096. © Seer Publishing 1 The Journal of Contemporary Dental Practice, Volume 8, No. 1, January 1, 2007 Introduction Hereditary gingival fibromatosis (HGF), also Ankara, Turkey with a complaint of recurrent known as elephantiasis gingiva, hereditary generalized gingival overgrowth. The patient gingival hyperplasia, idiopathic fibromatosis, had presented himself for examination at the and hypertrophied gingival, is a rare condition same clinic with the same complaint 15 years (1:750000)1 which can present as an isolated ago. At that time, he was treated with full-mouth disorder or more rarely as a syndrome periodontal surgery after the diagnosis of HGF component.2,3 This condition is characterized by had been made following clinical and histological a slow and progressive enlargement of both the examination (Figures 1 A-B).
    [Show full text]
  • Intrusion of Incisors to Facilitate Restoration: the Impact on the Periodontium
    Note: This is a sample Eoster. Your EPoster does not need to use the same format style. For example your title slide does not need to have the title of your EPoster in a box surrounded with a pink border. Intrusion of Incisors to Facilitate Restoration: The Impact on the Periodontium Names of Investigators Date Background and Purpose This 60 year old male had severe attrition of his maxillary and mandibular incisors due to a protrusive bruxing habit. The patient’s restorative dentist could not restore the mandibular incisors without significant crown lengthening. However, with orthodontic intrusion of the incisors, the restorative dentist was able to restore these teeth without further incisal edge reduction, crown lengthening, or endodontic treatment. When teeth are intruded in adults, what is the impact on the periodontium? The purpose of this study was to determine the effect of adult incisor intrusion on the alveolar bone level and on root length. Materials and Methods We collected the orthodontic records of 43 consecutively treated adult patients (aged > 19 years) from four orthodontic practices. This project was approved by the IRB at our university. Records were selected based upon the following criteria: • incisor intrusion attempted to create interocclusal space for restorative treatment or correction of excessive anterior overbite • pre- and posttreatment periapical and cephalometric radiographs were available • no incisor extraction or restorative procedures affecting the cementoenamel junction during the treatment period pretreatment pretreatment Materials and Methods We used cephalometric and periapical radiographs to measure incisor intrusion. The radiographs were imported and the digital images were analyzed with Image J, a public-domain Java image processing program developed at the US National Institutes of Health.
    [Show full text]
  • Periodontal Approach of Impacted and Retained Maxillary Anterior Teeth
    DOI: 10.1051/odfen/2018053 J Dentofacial Anom Orthod 2018;21:204 © The authors Periodontal approach of impacted and retained maxillary anterior teeth N. Henner1, M. Pignoly*2, A. Antezack*3, V. Monnet-Corti*4 1 Former University Hospital Assistant Periodontology – Private Practice, 30000 Nîmes 2 University Hospital Assistant Periodontology – Private Practice, 13012 Marseille 3 Oral Medicine Resident, 13005 Marseille 4. University Professor. Hospital practitioner. President of the French Society of Periodontology and Oral Implantology * Public Assistant for Marseille Hospitals (Timone-AP-HM Hospital, Odontology Department, 264 rue Saint-Pierre, 13385 Marseille) – Faculty of Odontology, Aix-Marseille University (27 boulevard Jean-Moulin, 13385 Marseille) ABSTRACT Treatment of the impacted and retained teeth is a multidisciplinary approach involving close coopera- tion between periodontist and orthodontist. Clinical and radiographic examination leading subsequently to diagnosis, remain the most important prerequisites permitting appropriate treatment. Several surgical techniques are available to uncover impacted/retained tooth according to their position within the osseous and dental environment. Moreover, to access to the tooth and to bond an orthodontic anchorage, the surgical techniques used during the surgical exposure must preserve the periodontium integrity. These surgical techniques are based on tissue manipulations derived from periodontal plastic surgery, permitting to establish and main- tain long-term periodontal health. KEYWORDS Mucogingival surgery, periodontal plastic surgery, impacted tooth, retained tooth, surgical exposure INTRODUCTION A tooth is considered as impacted when it eruption 18 months after the usual date of has not erupted after the physiological date eruption, when the root apices are edified and its follicular sac does not connect with and closed.
    [Show full text]
  • Role of Extracellular Proteases in Biofilm Disruption of Gram Positive
    e Engine ym er z in n g E Mukherji, et al., Enz Eng 2015, 4:1 Enzyme Engineering DOI: 10.4172/2329-6674.1000126 ISSN: 2329-6674 Review Article Open Access Role of Extracellular Proteases in Biofilm Disruption of Gram Positive Bacteria with Special Emphasis on Staphylococcus aureus Biofilms Mukherji R, Patil A and Prabhune A* Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India *Corresponding author: Asmita Prabhune, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India, Tel: 91-020-25902239; Fax: 91-020-25902648; E-mail: [email protected] Rec date: December 28, 2014, Acc date: January 12, 2015, Pub date: January 15, 2015 Copyright: © 2015 Mukherji R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Bacterial biofilms are multicellular structures akin to citadels which have individual bacterial cells embedded within a matrix of a self-synthesized polymeric or proteinaceous material. Since biofilms can establish themselves on both biotic and abiotic surfaces and that bacteria residing in these complex molecular structures are much more resistant to antimicrobial agents than their planktonic equivalents, makes these entities a medical and economic nuisance. Of late, several strategies have been investigated that intend to provide a sustainable solution to treat this problem. More recently role of extracellular proteases in disruption of already established bacterial biofilms and in prevention of biofilm formation itself has been demonstrated. The present review aims to collectively highlight the role of bacterial extracellular proteases in biofilm disruption of Gram positive bacteria.
    [Show full text]
  • Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate
    Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc.
    [Show full text]
  • Head and Neck
    DEFINITION OF ANATOMIC SITES WITHIN THE HEAD AND NECK adapted from the Summary Staging Guide 1977 published by the SEER Program, and the AJCC Cancer Staging Manual Fifth Edition published by the American Joint Committee on Cancer Staging. Note: Not all sites in the lip, oral cavity, pharynx and salivary glands are listed below. All sites to which a Summary Stage scheme applies are listed at the begining of the scheme. ORAL CAVITY AND ORAL PHARYNX (in ICD-O-3 sequence) The oral cavity extends from the skin-vermilion junction of the lips to the junction of the hard and soft palate above and to the line of circumvallate papillae below. The oral pharynx (oropharynx) is that portion of the continuity of the pharynx extending from the plane of the inferior surface of the soft palate to the plane of the superior surface of the hyoid bone (or floor of the vallecula) and includes the base of tongue, inferior surface of the soft palate and the uvula, the anterior and posterior tonsillar pillars, the glossotonsillar sulci, the pharyngeal tonsils, and the lateral and posterior walls. The oral cavity and oral pharynx are divided into the following specific areas: LIPS (C00._; vermilion surface, mucosal lip, labial mucosa) upper and lower, form the upper and lower anterior wall of the oral cavity. They consist of an exposed surface of modified epider- mis beginning at the junction of the vermilion border with the skin and including only the vermilion surface or that portion of the lip that comes into contact with the opposing lip.
    [Show full text]
  • Dental Cementum Reviewed: Development, Structure, Composition, Regeneration and Potential Functions
    Braz J Oral Sci. January/March 2005 - Vol.4 - Number 12 Dental cementum reviewed: development, structure, composition, regeneration and potential functions Patricia Furtado Gonçalves 1 Enilson Antonio Sallum 1 Abstract Antonio Wilson Sallum 1 This article reviews developmental and structural characteristics of Márcio Zaffalon Casati 1 cementum, a unique avascular mineralized tissue covering the root Sérgio de Toledo 1 surface that forms the interface between root dentin and periodontal Francisco Humberto Nociti Junior 1 ligament. Besides describing the types of cementum and 1 Dept. of Prosthodontics and Periodontics, cementogenesis, attention is given to recent advances in scientific Division of Periodontics, School of Dentistry understanding of the molecular and cellular aspects of the formation at Piracicaba - UNICAMP, Piracicaba, São and regeneration of cementum. The understanding of the mechanisms Paulo, Brazil. involved in the dynamic of this tissue should allow for the development of new treatment strategies concerning the approach of the root surface affected by periodontal disease and periodontal regeneration techniques. Received for publication: October 01, 2004 Key Words: Accepted: December 17, 2004 dental cementum, review Correspondence to: Francisco H. Nociti Jr. Av. Limeira 901 - Caixa Postal: 052 - CEP: 13414-903 - Piracicaba - S.P. - Brazil Tel: ++ 55 19 34125298 Fax: ++ 55 19 3412 5218 E-mail: [email protected] 651 Braz J Oral Sci. 4(12): 651-658 Dental cementum reviewed: development, structure, composition, regeneration and potential functions Introduction junction (Figure 1). The areas and location of acellular Cementum is an avascular mineralized tissue covering the afibrillar cementum vary from tooth to tooth and along the entire root surface. Due to its intermediary position, forming cementoenamel junction of the same tooth6-9.
    [Show full text]
  • The Cementum: Its Role in Periodontal Health and Disease*
    THE JOURNAL OF PERIODONTOLOGY JULY, NINETEEN HUNDRED SIXTY ONE The Cementum: Its Role In Periodontal Health and Disease* by DONALD A. KERR, D.D.S., M.S.,** Ann Arbor, Michigan HE cementum is a specialized calcified tissue of mesenchymal origin which provides for the attachment of the periodontal fibers to the surface of the Troot. It consists of 45 to 50 per cent inorganic material and 50 to 55 per cent organic material with the inorganic material in a hydroxyl apatite structure. The primary cementum is formed initially by appositional growth from the dental sac and later from the periodontal membrane under the influence of cementoblasts. It is formed in laminated layers with the incorporation of Sharpey's fibers into a fibrillar matrix which undergoes calcification. Cementum deposition is a Continuous process throughout life with new cementum being deposited over the old cemental surface. Cementum is formed by the organiza• tion of collagen fibrils which are cemented together by a matrix produced by the polymerization of mucopolysaccharides. This material is designated as cementoid and becomes mature cementum upon calcification. The significance of the continuous deposition of cementum has received various interpretations. 1. Continuous deposition of cementum is necessary for the reattachment of periodontal fibers which have been destroyed or which require reorientation due to change in position of teeth. It is logical that there should be a continuous deposition of cementum because it is doubtful that the initial fibers are retained throughout the life of the tooth, and therefore new fibers must be continually formed and attached by new cementum.
    [Show full text]
  • Therapeutic Effects of a Combined Antibiotic-Enzyme Treatment on Subclinical Mastitis in Lactating Dairy Cows
    Veterinarni Medicina, 61, 2016 (5): 237–242 Original Paper doi: 10.17221/8876-VETMED Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows B. Khoramian1, M. Emaneini2, M. Bolourchi3, A. Niasari-Naslaji3, A. Gorganzadeh1, S. Abani1, P. Hovareshti3 1Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran 2School of Medicine, Tehran University of Medical Sciences. Tehran, Iran 3Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran ABSTRACT: The objective of this study was to evaluate a combined antibiotic-enzyme therapy for Staphylococcus aureus mastitis and biofilm formation. A total of 141 cases of S. aureus chronic mastitis from three farms were divided ® into two groups: the control group (n = 54) were treated with Nafpenzal ointment; the enzyme + antibiotic group ® ® (n = 87) were treated with Nafpenzal plus an enzymatic ointment (MastiVeyxym ). Quantitative determination of biofilm formation was determined using a colorimetric microplate assay and the detection of ica genes by PCR. Enzyme + antibiotic therapy did not significantly improve cure rates compared to control (48.3 vs 38.9%). The cure rate for infections caused by biofilm-positive strains was 42.6 and 46.6% for control and enzyme + antibiotic groups, respectively (P > 0.05). Comparison of cure rates between farms showed a relationship with somatic cell count (SCC), parity and oxacillin resistance. 79.4% of the isolates produced biofilm and antibacterial resistance rates for oxacillin, penicillin and streptomycin were 25.5, 71.6 and 95.7%, respectively. These results indicate that while the increase in mastitis cure rate using enzymatic therapy was not significant, this treatment could be useful in some situations.
    [Show full text]
  • Macroanatomical Investigations on the Oral Cavity of Male Porcupines (Hystrix Cristata)
    Walaa Fadil Obead et al /J. Pharm. Sci. & Res. Vol. 10(3), 2018, 623-626 Macroanatomical investigations on the oral cavity of male Porcupines (Hystrix cristata) Walaa Fadil Obead1, Abdularazzaq baqer kadhim2 , fatimha Swadi zghair2 1Department of Anatomy and Histology, Faculty of Veterinary Medicine'' University of Kerbala, Iraq. 2Division of Anatomy and Histology'', Faculty of Veterinary Medicine'' University of Qadysiah, Iraq. Abstract: ''Six adult males hystrix crestate was utilizes to decide the district anatomy of their mouth. The mouth was the advent via disjunct the temporo-mandibular united and the topographically and Morphometric tagged of the tongue, cheek pouch, major salivary glands, palate, lips and teeth were studied. The upper flange discovered a philtrum rollover from ''the median bulkhead of the nostrils and terminating at the oral chapping in a dissimilarity triangle to depiction the elongated incisors''. The lower flange bent a smooth arch ventral to the upper flange. A standard number of jagged Palatine ridges are eight. Histological appearance of the tongue was confirmed after staining of the eosin and the haematoxylin. The parotid, the mandibular, and the sublingual are major salivary glands were well developed''. This labor information baseline investigates data on the anatomy of the Hystrix cristata mouth and will have usefulness informative the adaptive appearance in this rodent to its lifestyle, habitat and diet. Keyword: Oral cavity, Tongue, Salivary gland, Palate, Hystrix crestate. INTRODUCTION sublingual organs be inverse and fine urbanized.'' (9, 10).The aim ''Rodents include main and the majority varied collection of of the study anatomy and histology of oral cavity of porcupian. mammals through over 1700 dissimilar types (1).
    [Show full text]
  • Cleft Palate/Lip
    CLEFT PALATE/LIP WHAT IS A CLEFT? A cleft is a separation in the skin, tissue lining of the mouth, muscle, and bone that is normally fused together; however, no structures are missing. Clefts can be either unilateral (one side) or bilateral (both sides) and may include the lip, soft palate and/or hard palate or any of the structures in isolation. TYPES OF CLEFTS Cleft Lip – separation in the lip and may include the bottom of the nose Cleft Palate – separation in the hard palate and/or soft palate Submucous Cleft – separation in the muscle of the soft palate with the tissue lining of the mouth intact. Often, it is not easily viewed. WHEN DID CLEFTING HAPPEN? During the 4th week of fetal development, the primary palate (line from nostril to upper lip and mucosa behind upper teeth) fuse together. By the 8th week, the tongue drops in the mouth and the secondary palate (hard palate and soft palate) fuse together with the nasal septum. By the 12th week, if the process is not complete, a cleft (separation) will develop. WHAT CAUSED MY CHILD’S CLEFT? The exact cause is not known but theories include: Low intake of Folic Acid (Vitamin B) Large intake of Vitamin A Genetic disposition Syndromes or Sequences (Pierre Robin, Treacher Collins) Drugs, alcohol, medication, and smoking CLEFT PALATE MANAGEMENT You and your child will be in contact with many different healthcare professionals who need to work together. Every case is individualized, therefore your child will need a thorough assessment to the appropriate treatment plan.
    [Show full text]