FERC Hydropower Primer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy
Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Technical Report A Comparative Review of a Dozen NREL/TP-6A2-45046 National Energy Plans: Focus on March 2009 Renewable and Efficient Energy Jeffrey Logan and Ted L. James Prepared under Task No. SAO7.9C50 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. -
Energy Conservation
2016 Centre County Planning Opportunities Energy Conservation Centre County Comprehensive Plan — Phase II Implementation Strategies Introduction County-wide In 2003, the Centre County Board of Commissioners Planning adopted a County-wide Comprehensive Plan which included Goals background studies, inventories of existing conditions, goals and recommendations. These recommendations, revised Adopted 2003 and updated, continue to serve as a vision and a general direction for policy and community improvement. Those specific to energy conservation will be discussed here along with implementation strategies to achieve the recom- #1 — Identify, pre- mendations. For more detailed background information serve, enhance and monitor agricultural please refer to the 2003 Comprehensive Plan available on resources. the Centre County Planning and Community Development webpage: #2 — Identify, pre- serve, and monitor http://centrecountypa.gov/index.aspx?nid=212. environmental and Centre County seeks to balance growth, protection of natural resources. resources, investment in compatible new building Small wind turbines like erected #3 — Preserve his- development, and incentives for sustainable development. at the DEP Moshannon Office, toric and cultural Much of this effort includes stewardship, community can help offset electricity costs resources. outreach and expert professional service. to the property. #4 — Ensure decent, safe, sanitary and affordable housing in suitable living surroundings, com- patible with the en- vironment for all The Keystone Principles individuals. In 2005, Pennsylvania adopt- Redevelop first #5 — Appropriately ed the “Keystone Principles Provide efficient infrastructure locate and maintain for Growth, Investment and existing and pro- Resource Conservation”, a Concentrate development posed community set of principles that have Increase job opportunities facilities, utilities, focused Pennsylvania on and services for all Foster sustainable businesses reinvestment and reuse of its residents. -
Aug 1 5 2016
Case 3:16-cv-00207-JLH Document 1 Filed 08/15/16 Page 1 of 40 AUG 1 5 2016 UNITED STATES DISTRICT COURT EASTERN DISTRICT OF ARKANSAS JA~CK,CLERK By: DEP CLERK DOWNWIND, LLC and GOLDEN BRIDGE, LLC ) ) Plaintiffs, ) ) Civil Action No. 3 •\10 wdloJ - \k.\-\ ~ ) ) UNITED STATES DEPARTMENT OF ENERGY;) ERNEST MONIZ, in his official capacity as ) Secretary of the United States Department of ) Energy; SOUTHWESTERN POWER ) 1hJs case assigned to Disbict Judge tWrretz . · ·-~ ADMINISTRATION; SCOTT CARPENTER, ) ml ID.Magistrate Judge._,...,.J .....o\.,..~_1 ______ -3 in his official capacity as Administrator of the ) ,,, ' .. , .,.;, .. ;:.. ~ Southwestern Power Administration ) ) Defendants. ) COMPLAINT FOR DECLARATORY AND INJUNCTIVE RELIEF INTRODUCTION 1. This case and controversy seeks declaratory judgments and injunctive relief regarding (i) procedural and substantive due process rights, (ii) the scope and limitations of the Department of Energy's statutory authorities, (iii) the sufficiency and rationale of the Department of Energy's evaluations and determinations, and (iv) the proposed use of federal eminent domain to benefit a private party, all of which arise from the Department of Energy's first-ever exercise of the authority granted by Section 1222 of the Energy Policy Act of 2005, which is codified as 42 U.S.C. § 16421 ("Section 1222"). 2. Acting pursuant to Section 1222, the Department of Energy ("DOE") published a Record of Decision and Secretarial Determination evidencing DOE's decision to enter a Participation Agreement for the direct benefit of PLAINS AND EASTERN CLEAN LINE HOLDINGS LLC ("Holdings"), ARKANSAS CLEAN LINE LLC ("ACL"), PLAINS AND Case 3:16-cv-00207-JLH Document 1 Filed 08/15/16 Page 2 of 40 EASTERN CLEAN LINE OKLAHOMA LLC ("PECL OK"), OKLAHOMA LAND ACQUISITION COMPANY LLC ("OLA"), and "solely to the extent that any of the provisions . -
Exploring Design, Technology, and Engineering
Exploring Design, Technology, & Engineering © 2012 Chapter 21: Energy-Conversion Technology—Terms and Definitions active solar system: a system using moving parts to capture and use solar energy. It can be used to provide hot water and heating for homes. anode: the negative side of a battery. cathode: the positive side of a battery. chemical converter: a technology that converts energy in the molecular structure of substances to another energy form. conductor: a material or object permitting an electric current to flow easily. conservation: making better use of the available supplies of any material. electricity: the movement of electrons through materials called conductors. electromagnetic induction: a physical principle causing a flow of electrons (current) when a wire moves through a magnetic field. energy converter: a device that changes one type of energy into a different energy form. external combustion engine: an engine powered by steam outside of the engine chambers. fluid converter: a device that converts moving fluids, such as air and water, to another form of energy. four-cycle engine: a heat engine having a power stroke every fourth revolution of the crankshaft. fuel cell: an energy converter that converts chemicals directly into electrical energy. gas turbine: a type of engine that creates power from high velocity gases leaving the engine. heat engine: an energy converter that converts energy, such as gasoline, into heat, and then converts the energy from the heat into mechanical energy. internal combustion engine: a heat engine that burns fuel inside its cylinders. jet engine: an engine that obtains oxygen for thrust. mechanical converter: a device that converts kinetic energy to another form of energy. -
(Hydropower) Technology in South African Narrow-Reef Hard-Rock Mines
The Southern African Institute of Mining and Metallurgy Platinum 2012 P. Fraser THE USE OF HIGH-PRESSURE, WATER-HYDRAULIC (HYDROPOWER) TECHNOLOGY IN SOUTH AFRICAN NARROW-REEF HARD-ROCK MINES P. Fraser Hydro Power Equipment (Pty) Ltd Abstract This paper examines the new water-hydraulic (hydropowered) drill rigs that have been developed and proven in the last decade primarily in tabular, shallow-dipping, narrow-reef hard-rock South African mines. These include drill rigs for flat-end tunnel development, narrow inclined raises and winzes, large inclines and declines and longhole-based developments such as ore passes and vent raises. The hydropower technology rigs offer advantages both in safety and performance over traditional compressed-air-powered, hand-held development, and are generally more cost-effective than imported oil electro-hydraulic drill rigs. Furthermore, hydropowered rigs are inherently energy-efficient. The benefits of hydropower are discussed and a ‘comprehensive development model’ is presented which demonstrates that ore-bodies can be accessed in significantly shorter times. ‘Localized’ half level hydropower systems are introduced and a range of ancillary equipment available is listed. Introduction According to Neville Nicolau, CEO of Anglo Platinum, ’Safety is our moral licence to operate’ and, ’if we don’t get our safety right, then you must expect society to take away our licence to operate, and then we would be responsible for closing mines and destroying work 1. While the long-term trend in the Fatal Injury Frequency Rate (FIFR) is downward, fatalities are not acceptable to any of the stakeholders in the mining industry or investor community. Safety is therefore a non-negotiable imperative. -
The Contribution of Hydropower Reservoirs to Flood Control in the Austrian Alps
Ilydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990. The contribution of hydropower reservoirs to flood control in the Austrian Alps W. PIRCHER Tiroler Wasserkraftwerke Aktiengesellschaft (TIWAG) Landhausplatz 2, A-6o2o Innsbruck, Austria ABSTRACT A considerable improvement to flood control is a significant - and free - additional utility accruing to the general public from the construction of hydropower storage reservoirs. By way of illustration, the author presents a comparative study on the basis of a number of flood events in valleys influenced by storage power plants. INTRODUCTION Austria has approximately thirty major storage reservoirs built by hy dropower companies and operated on a seasonal basis. Since they tend to be located at high altitudes, total stored energy from a combined active storage of 1.3oo hm^ is over 3.5oo GWh for winter and peak power generation, and this forms the backbone of electricity generation in Austria. Taking into account also the smaller reservoirs for daily and weekly storage, approximately 31% of the country's present annual total hydroelectric generation of 34.ooo GWh is controlled by reservoir sto rage, with the high degree of control and flexibility this offers. The primary goal in the construction of all storage power schemes in Austria, and the only source of subsequent earnings for the hydro- power companies, is of course electricity generation, but such schemes also involve a whole series of additional utilities that accrue to the general public free of charge. As a rule, significant improvements in flood control are the most important of these spin-offs, although be nefits to the local infrastructure and tourism as well as a markable increase of flow during the winter period are not to be underestimated, either. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
Adaptive Equipment and Energy Conservation Techniques During Performance of Activities of Daily Living
Adaptive Equipment and Energy Conservation Techniques During Performance of Activities of Daily Living Problem: A wide range of diagnosis can affect the performance of activities of daily living (ADLs). The performance of these activities; feeding, dressing, and bathing to name a few are an essential part of our daily lives. An individual’s ability to function in daily activities is often dependent on physical and cognitive health. The use of adaptive equipment and energy conservation techniques can make all the difference in making these important daily tasks possible and effect one’s perception and quality of their life. Adaptive Equipment Adaptive equipment is used to improve functional capabilities. Adaptations can assist someone in their home or out in the community, ranging from longer, thicker handles on brushes and silver wear for making them easier to grasp to a powered wheelchair. Below is a chart including various diagnosis and examples of adaptive equipment that could greatly benefit individuals experiencing similar circumstances. The equipment listed will promote functional independence as well as safety during performance of ADLs. Diagnosis Adaptive Rationale for Equipment Price Website/Resourc Equipment Range e Link to Purchase Equipment Joint Reacher This assistive device can help in $5.50 - https://www.healthpro Replacement accessing spaces that may be $330.00 ductsforyou.com/p- hard for the individual to reach featherlite- (THA/TKR) otherwise. Frequent sitting and reacher.html standing (bending more than 90 degrees) are not recommended for individuals with a recent joint replacement. This tool will allow the individual to grasp an object further away without movement of lower extremities. -
A Case Study in the Dudh Koshi Basin of Nepal
water Article Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal Daniele Bocchiola 1,2,* , Mattia Manara 1 and Riccardo Mereu 3 1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, L. da Vinci 32, 20133 Milano, Italy; [email protected] 2 EVK2CNR Committee of Italy, S. Bernardino 145, 24122 Bergamo, Italy 3 Department of Energy Engineering (DENG), Politecnico di Milano, Campus-Bovisa, Lambruschini, 4a, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 20 July 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: In spite of the very large hydropower potential given from the melting snow and ice of Himalayas, Nepal’s population has little hydropower production. The high use of fossil fuels and biomasses results in measurable air pollution, even in the mountain areas. Hydropower planning and implementation, in the face of the changing climate, is therefore paramount important. We focus here on Nepal, and particularly on the Dudh Koshi river basin, with a population of ca. 170,000 people, within an area with large potential for hydropower production. Our main objectives are to (i) preliminarily design a local hydropower grid based on a distributed run of river ROR scheme, and (ii) verify the resilience of the grid against modified hydrology under perspective climate change, until the end of the century. To do so, we set up and tune the Poli-Hydro semi-distributed glacio-hydrological model, mimicking the complex hydrology of the area. We then modify a state of the art algorithm to develop and exploit a heuristic, resource-demand based model, called Poli-ROR. -
Improving Institutional Access to Financing Incentives for Energy
Improving Institutional Access to Financing Incentives for Energy Demand Reductions Masters Project: Final Report April 2016 Sponsor Agency: The Ecology Center (Ann Arbor, MI) Student Team: Brian La Shier, Junhong Liang, Chayatach Pasawongse, Gianna Petito, & Whitney Smith Faculty Advisors: Paul Mohai PhD. & Tony Reames PhD. ACKNOWLEDGEMENTS We would like to thank our clients Alexis Blizman and Katy Adams from the Ecology Center. We greatly appreciate their initial efforts in conceptualizing and proposing the project idea, and providing feedback throughout the duration of the project. We would also like to thank our advisors Dr. Paul Mohai and Dr. Tony Reames for providing their expertise, guidance, and support. This Master's Project report submitted in partial fulfillment of the OPUS requirements for the degree of Master of Science, Natural Resources and Environment, University of Michigan. ABSTRACT We developed this project in response to a growing locallevel demand for information and guidance on accessing local, state, and federal energy financing programs. Knowledge regarding these programs is currently scattered across independent websites and agencies, making it difficult for a lay user to identify available options for funding energy efficiency efforts. We collaborated with The Ecology Center, an Ann Arbor nonprofit, to develop an informationbased tool that would provide tailored recommendations to small businesses and organizations in need of financing to meet their energy efficiency aspirations. The tool was developed for use by The Ecology Center along with an implementation plan to strengthen their outreach to local stakeholders and assist their efforts in reducing Michigan’s energy consumption. We researched and analyzed existing clean energy and energy efficiency policies and financing opportunities available from local, state, federal, and utility entities for institutions in the educational, medical, religious, and multifamily housing sectors. -
Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems. -
Federal Energy Regulatory Commission Can Use Its Existing
1 ADDRESSING CLIMATE CHANGE WITHOUT LEGISLATION HOW THE FEDERAL ENERGY REGULATORY COMMISSION CAN USE ITS EXISTING LEGAL AUTHORITY TO REDUCE GREENHOUSE GAS EMISSIONS AND INCREASE CLEAN ENERGY USE By Steven Weissman* and Romany Webb** Center for Law, Energy, and the Environment University of California, Berkeley, School of Law July 2014 * Steven Weissman is a Lecturer in Residence at the University of California, Berkeley, School of Law, and Director of the Energy Program at the Law School’s Center for Law, Energy, and the Environment. ** Romany Webb received an LL.M., with a Certificate of Specialization in Environmental Law, from the University of California, Berkeley, School of Law in May 2013. Romany also holds a LL.B. (awarded with First Class Honors) (2008) and BCom(Econ) (awarded with Distinction) (2008) from the University of New South Wales in Australia. 2 ACKNOWLEDGEMENTS The authors are grateful to the University of California, Berkeley Energy and Climate Institute for its generous support. We would specifically like to thank Paul Wright, Director of the Berkeley Energy and Climate Institute, and Vice Chancellor for Research Graham Fleming for their commitment to this project. We also thank Danny Cullenward and Catherine Wright of the Berkeley Energy and Climate Institute for their help in the production of this document. Any errors are our own. 3 CONTENTS 1. INTRODUCTION ..............................................................................1 2. THE FEDERAL ENERGY REGULATORY COMMISSION.......................................4 3. WHOLESALE ELECTRICITY SALES ............................................................5 3.1. FERC’S REGULATORY JURISDICTION OVER WHOLESALE ELECTRICITY SALES ............1 3.2. ACTIONS AVAILABLE TO FERC TO ENSURE A LEVEL PLAYING FIELD BETWEEN FOSSIL FUEL AND RENEWABLE GENERATORS........................................................2 3.2.1.