State of Our Waters 2020

Total Page:16

File Type:pdf, Size:1020Kb

State of Our Waters 2020 State of Our Waters 2020 Dear Southeastern Massachusetts Legislator, Watershed Action The challenges we face as a Commonwealth at the present time are unprecedented. Alliance We very much appreciate that you have prioritized a response to address the devastating public health and economic impacts of Covid-19. While your significant of Southeastern deliberations continue, we, as environmental organizations, press on to address Massachusetts ongoing issues facing our watersheds and the people who live in them. Those efforts watershedaction.org include ensuring that our water is clean, that we have enough water, and that our waterways are healthy and accessible to everyone. Protecting water and We had hoped to discuss these important issues with you in person on March 31st at natural resources in the 2020 State of Our Waters Legislative Breakfast. Because we and the dozens of Southeastern citizens that planned to join us are unable to do this in person, we prepared the Massachusetts attached fact sheets to describe some successful projects and partnerships advancing these interests. P.O. Box 43, Norwell, MA 02061 We know that the pandemic has broad-reaching impacts that shift budget priorities as WAAcoordinator@ revenue projections change. However, protection of our water resources remains a nsrwa.org significant priority for public health, safety and the welfare of all residents. Therefore, we ask you to seriously consider the requests for level funding of several important budget line items and support of critical bills detailed in the fact sheets. Members & Friends Barnstable Clean Water If you have questions, please contact the watershed organizations within your district, Coalition or contact the Watershed Action Alliance coordinator and outreach manager, Dorie Herring Ponds Stolley, at [email protected]. Watershed Association Jones River Watershed Thank you for your support of our bountiful natural heritage. Association Monponsett Watershed Respectfully, Association Neponset River Pine DuBois, Executive Director, Jones River Watershed Association Watershed Association Lawrence “Pompey” Delafield, President, Six Ponds Improvement Association North and South Rivers Topher Hamblett, Director of Advocacy and Policy, Save the Bay Watershed Association Suzanne Lillie, President, Monponsett Watershed Association Save the Bay – Narragansett Bay Heather Rockwell, Director of Operations, Barnstable Clean Water Coalition Six Ponds Improvement Kerry Malloy Snyder, Advocacy Director, Neponset River Watershed Association Association Don Williams, President, Herring Ponds Watershed Association Weir River Watershed Samantha Woods, Executive Director, North and South Rivers Watershed Association, Association and, Board Member, Weir River Watershed Association WATERSHED ACTION ALLIANCE MEMBER ORGANIZATION CONTACTS Organization Contact Phone Email Heather Rockwell, Barnstable Clean Water Director of (508) 420-0780 [email protected] Coalition Operations Don Williams, (508) 833-4355 [email protected] Herring Ponds President Watershed Association Ramona Krogman, (781) 820-9290 [email protected] Government Liaison Jones River Watershed Pine duBois, (781) 585-2322 [email protected] Association Executive Director Monponsett Watershed Suzanne Lillie, N.A. [email protected] Association President Ian Cooke, Executive (781) 575-0354, [email protected] Neponset River Director Ext. 305 Watershed Association Kerry Malloy [email protected] Snyder, Advocacy Ext. 300 Director North and South Rivers Samantha Woods, (781) 659-8168 [email protected] Watershed Association Executive Director Topher Hamblett, Save the Bay – (401) 272-3540, Director of Advocacy [email protected] Narragansett Bay Ext. 119 and Policy Six Ponds Improvement Lawrence “Pompey” (845) 705-4421 [email protected] Association Delafield, President Dorie Stolley, Watershed Action Coordinator and (757) 777-6601 [email protected] Alliance Outreach Manager Weir River Watershed Samantha Woods, (617) 347-7586 [email protected] Association Board Member Neponset River Watershed Assoc. Weir River Watershed Assoc. North and South Rivers Watershed Assoc. Jones River Watershed Assoc. Monponsett Watershed Assoc. Six Ponds Improvement Assoc. Herring Ponds Watershed Assoc. Barnstable Clean Water Coalition Watershed Action Alliance Save the Bay of Southeastern Massachusetts Narragansett Bay Member Organizations Ensuring Enough Water for All Increasing population and development, combined with the effects of climate change, raise the concern that we could run out of clean, fresh water necessary to sustain natural resources, including fish and wildlife, and for business, Watershed recreation, and development for centuries to come. Watershed associations Action work hard in their communities to ensure there is enough water for people, fish, Alliance wildlife, and the environment. of Southeastern Success Stories Massachusetts watershedaction.org • Earned a MassDEP Water Management Act grant to support a rebate program to incentivize installation of water efficient fixtures in four partner towns (Neponset). Protecting water and • Championed an outdoor irrigation restriction bylaw that resulted in the saving natural resources in of 300,000 gallons per day in Scituate and allowed streamflow releases from Southeastern reservoirs (North and South). Massachusetts • Influenced decisions on locations of new community wells; encouraged the consideration of impact on water levels in ponds through commentary at Board of Selectmen and other meetings; advocated for formation of a new P.O. Box 43, Water Conservation Committee (Herring Ponds and Six Ponds). Norwell, MA 02061 • Helped implement Kingston bylaws to conserve water; influenced decision to [email protected] locate sewer treatment plant in aquifer recharge area rather than losing fresh water to Kingston Bay (Jones River). • Provide leadership and expertise to towns on water supply management, Members & Friends infrastructure improvements that restore streamflow, conservation Barnstable Clean Water measures, recharge, improved regulatory standards, and more (all). Coalition • Advocated for improved stormwater NPDES MS4 permit structure (many). Herring Ponds Watershed Association Jones River Watershed What Can Legislators Do? Association Prioritize Dept. of Environmental Protection Administration funding (line item Monponsett Watershed 2200-0100). While an increase of $7.92M to $40M (from $32.08M in FY20) would Association be ideal, we urge at least level-funding of this line item. Adequate staff and Neponset River resources are essential for watershed planning and permitting, safe management Watershed Association of toxics, enforcing environmental laws, hazardous waste cleanup, and preservation of wetlands and coastal resources. North and South Rivers Watershed Association Prioritize Dept. of Conservation and Recreation Watershed Management Office Save the Bay – funding (line item 2810-0100). While an increase of $2.75M to $50M (from Narragansett Bay $47.25M in FY20) would be ideal, we urge at least level funding of this line item which is essential to support research to safeguard our rivers, lakes and water Six Ponds Improvement Association supplies and provide public access for recreation. Weir River Watershed Maintain contact with your local watershed association whose staff are Association knowledgeable about the issues in your district and have subject matter expertise. Improving Water Quality When it rains, stormwater carries pollutants into our waterways. Improperly treated or managed wastewater is also a source of contamination to our surface and groundwater. Streams, bays, ponds and rivers are vital to a resilient Watershed environment, healthy fisheries, and water recreation. Watershed associations Action dedicate themselves to keeping our waters free from multiple types of pollution. Alliance Success Stories of Southeastern Massachusetts • Monitor the long-term health of our waterways and provide data to inform watershedaction.org decisions on stormwater infrastructure upgrades to target sources of pollution, and earn funding for the same. (Jones River, Six Ponds, Neponset, Herring Ponds, North and South, Monponsett, Barnstable, Save the Bay). Protecting water and • Raised and planted 150,000 oysters to improve water quality (Barnstable). natural resources in • Purchased land to act as natural buffers in riparian areas to protect water Southeastern quality, reduce erosion and provide recreation (Herring Ponds, North and Massachusetts South, Jones River). • Implemented regional education program in 22 Southeastern MA towns to P.O. Box 43, raise awareness about actions people can take to reduce pollution; reaches Norwell, MA 02061 over 4,000 students annually (North and South, Neponset). • Along with USGS and US EPA, drilled test wells and collected sediment core [email protected] samples to determine best placement for installation of innovative/ alternative septic systems in proposed residential development (Barnstable). Members & Friends • Protected important fisheries through a revised power station permit, reducing use of bay water and temperature of cooling water discharge. (Save the Bay). Barnstable Clean Water Coalition Herring Ponds What Can Legislators Do? Watershed Association Prioritize MassDEP Admin. funding (item 2200-0100). While an increase of Jones River Watershed $7.92M to $40M (from $32.08M in FY20) would be ideal, we urge at least level- Association
Recommended publications
  • Tidal Flushing and Eddy Shedding in Mount Hope Bay and Narragansett Bay: an Application of FVCOM
    Tidal Flushing and Eddy Shedding in Mount Hope Bay and Narragansett Bay: An Application of FVCOM Liuzhi Zhao, Changsheng Chen and Geoff Cowles The School for Marine Science and Technology University of Massachusetts at Dartmouth 706 South Rodney French Blvd., New Bedford, MA 02744. Corresponding author: Liuzhi Zhao, E-mail: [email protected] 1 Abstract The tidal motion in Mt. Hope Bay (MHB) and Narragansett Bay (NB) is simulated using the unstructured grid, finite-volume coastal ocean model (FVCOM). With an accurate geometric representation of irregular coastlines and islands and sufficiently high horizontal resolution in narrow channels, FVCOM provides an accurate simulation of the tidal wave in the bays and also resolves the strong tidal flushing processes in the narrow channels of MHB-NB. Eddy shedding is predicted on the lee side of these channels due to current separation during both flood and ebb tides. There is a significant interaction in the tidal flushing process between MHB-NB channel and MHB-Sakonnet River (SR) channel. As a result, the phase of water transport in the MHB-SR channel leads the MHB-NB channel by 90o. The residual flow field in the MHB and NB features multiple eddies formed around headlands, convex and concave coastline regions, islands, channel exits and river mouths. The formation of these eddies are mainly due to the current separation either at the tip of the coastlines or asymmetric tidal flushing in narrow channels or passages. Process-oriented modeling experiments show that horizontal resolution plays a critical role in resolving the asymmetric tidal flushing process through narrow passages.
    [Show full text]
  • New Partnership for Restoration in Southeast Coastal New England Margherita Pryor from Westerly, Rhode Island to Chatham, Massachusetts, Wildlife Service, U.S
    New Partnership for Restoration in Southeast Coastal New England Margherita Pryor From Westerly, Rhode Island to Chatham, Massachusetts, Wildlife Service, U.S. Geological Survey, Natural Resources the coastal watersheds of southeastern New England occupy Conservation Service, and the Small Business Administra- a distinct ecological and management niche between Long tion. The Agency should also include stakeholders from local Island Sound and the Gulf of Maine. With its layers of 400 governments and agencies, non-governmental organizations, years of development—from farming and fishing to indus- and academic institutions. The conferees also recommend trialization to suburban office parks—this area presents that the Agency, through this regional effort, facilitate the environmental challenges that are unique, but also represen- development of strategies to restore and protect the southern tative of the country at large. In addition to its splendid sense New England Estuaries. of place and nature, history has also left it with the cumula- In response, EPA Region 1 has been working with inter- tive impacts of centuries of ecological insults. Toxic residues, ested partners in both Rhode Island and Massachusetts, channeled and impounded rivers, and highly altered natural including federal, state, and local agencies, the Narragansett systems are legacies now compounded by excess nutrients Bay and Buzzards Bay NEPs, and non-governmental organi- and increasing vulnerability to climate change. zations such as the Cape Cod Commission, to think through In facing these daunting challenges, Southeastern New an effective partnership framework. Consistent with Congres- England is fortunate to be home to multiple federal, state, and sional direction, the goal of this partnership places particular local agencies—along with dozens of universities, research emphasis on addressing key habitat and water quality priori- institutions, watershed groups, land trusts, and other non- ties, especially the nexus between them in key activities so governmental organizations.
    [Show full text]
  • Bedrock Valleys of the New England Coast As Related to Fluctuations of Sea Level
    Bedrock Valleys of the New England Coast as Related to Fluctuations of Sea Level By JOSEPH E. UPSON and CHARLES W. SPENCER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 454-M Depths to bedrock in coastal valleys of New England, and nature of sedimentary Jill resulting from sea-level fluctuations in Pleistocene and Recent time UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication, as follows: Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level, by Joseph E. Upson and Charles W. Spencer. Washington, U.S. Govt. Print. Off., 1964. iv, 42 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 454-M) Shorter contributions to general geology. Bibliography: p. 39-41. (Continued on next card) Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level. 1964. (Card 2) l.Geology, Stratigraphic Pleistocene. 2.Geology, Stratigraphic Recent. S.Geology New England. I.Spencer, Charles Winthrop, 1930-joint author. ILTitle. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Configuration and depth of bedrock valleys, etc. Con. Page Abstract.__________________________________________ Ml Buried valleys of the Boston area. _ _______________
    [Show full text]
  • How Narragansett Bay Shaped Rhode Island
    How Narragansett Bay Shaped Rhode Island For the Summer 2008 issue of Rhode Island History, former director of the Naval War College Museum, Anthony S. Nicolosi, contributed the article, “Rear Admiral Stephen B. Luce, U.S.N, and the Coming of the Navy to Narragansett Bay.” While the article may prove too specialized to directly translate into your classroom, the themes and topics raised within the piece can fit easily into your lesson plans. We have created a handful of activities for your classes based on the role that Narragansett Bay has played in creating the Rhode Island in which we now live. The first activity is an easy map exercise. We have suggested a link to a user-friendly map, but if you have one that you prefer, please go ahead and use it! The goal of this activity is to get your students thinking about the geography of the state so that they can achieve a heightened visual sense of the bay—to help them understand its fundamental role in our development. The next exercise, which is more advanced, asks the students to do research into the various conflicts into which this country has entered. It then asks them, in groups, to deduce what types of ships, weapons, battles and people played a part in each of these wars, and of course, how they relate to Narragansett Bay. We hope that your students will approach the end result creatively by styling their charts after maritime signal “flags.” Exploring the Ocean State Rhode Island is the smallest state, measuring forty-eight miles from North to South and thirty-seven miles from east to west.
    [Show full text]
  • A History of Oyster Aquaculture in Rhode Island
    28 A History of Oyster Aquaculture in Rhode Island By Michael A. Rice Top: The Great Hurricane of 1938 severely damaged wharves, warehouses, and other shoreside facilities throughout the state. Photo by the Providence Journal. Middle: Photo courtesy Perry Raso, Matunuck Oyster Farm. Bottom: Rhode Island Agricultural Experiment Station Marine Laboratory at Jerusalem on Point Judith Pond. Photo taken in 1897 shows a steam tractor and nets for sampling the pond bottom. Photo cour- tesy of URI Special Collections. RHODE ISLAND AQUACULTURE INITIATIVE 29 The Rhode Island aquaculture industry is no longer moribund as evidenced by this steady and healthy rate of growth. Shellfishing and consumption of shellfish grounds or to regulate the fisheries. However, the common property principle and the states’ rights to manage their re- from Narragansett Bay and Rhode Island’s sources were reinforced by the 1842 U.S. Supreme Court. coastal salt ponds has been an important part In light of the controversy surrounding the early aquacul- ture leases and the U.S. Supreme Court decision, the General of Rhode Island’s history. During the early Assembly passed the Oyster Act of 1844, which was Rhode Island’s first aquaculture law. The act established a system of Colonial period, extensive oyster reefs were leasing tracts of submerged land for the purpose of culturing harvested for the consumption of the meats, oysters, as well as setting up a board of three shellfishery com- missioners—who served without salary—and a fee structure but the oyster shells had higher value as a raw for the leases. The fee structure ranged from a high of $10 material for the manufacture of lime for use per acre per year to a low of $1 per acre per year for larger, multiple-acre leases.
    [Show full text]
  • Commonwealth of Massachusetts Division of Marine Fisheries 1213 Purchase St
    Commonwealth of Massachusetts Division of Marine Fisheries 1213 Purchase St. 3rd Floor New Bedford, MA 02740 (508)990-2860 Paul J. Diodati Director fax (508)990-0449 Deval Patrick Governor Timothy P. Murray Lt. Governor Richard K. Sullivan, Jr. Secretary MarineFisheries River Herring Stocking Protocols Mary B. Griffin Commissioner Date: March 2013 Purpose: The Massachusetts Division of Marine Fisheries (MarineFisheries) has transferred river herring between river systems in stocking trucks to supplement restoration efforts since the 1940s. In 2012, MarineFisheries reviewed their river herring stocking methodologies to develop guidelines to aid our decisions on stocking. From this review, the following protocols were adopted to provide guidance to Marine Fisheries when evaluating town requests and new restoration initiatives that seek to transfer river herring from one river system to another. Restoration Objectives: It is important to highlight that our primary objective in restoring river herring populations is to create natural habitat conditions that support sustainable runs in coastal rivers. The restoration of native herring runs includes the improvement of spawning, nursery, and migratory habitat. Stocking herring can assist this process, but will not be a primary response or done in isolation from habitat improvement, and decisions will be carefully weighed to avoid unintended consequences. Population status: Due to low population levels, river herring are currently under a moratorium in Massachusetts in which harvest, possession, and sale are prohibited. Population declines are evident in several river systems that have been traditionally used for donor stock. Therefore, careful consideration, based on professional experience and protocols, will be used when selecting donor stocks and introducing herring to new habitats.
    [Show full text]
  • Nrcs Rhode Island (Ri) Anadromous Fish Habitat
    ;> Leaser NATURAL RESOURCES CONSERVATION SERVICE Rhode Island Anadromous Fish Habitat Restoration Special Project Proposal Fiscal Year 2005 SDMS DocID 273447 Pawtuxet River Falls Dam, Warwick & Cranston RJ Natural Resources Conservation \IRCS Service Statement of Need: Rhode Island once supported lucrative fisheries for anadromous Atlantic salmon (Salmo solar), American shad (Alosa sapidissima), and river herring - alewife (Alosa pseudoharengus)and blueback herring (Alosa aestavalis). These "anadromous" species spawn in fresh water, and mature and spend most of their adult lives in salt water. Because most of Rhode Island's rivers are blocked or obstructed by dams, weirs, tide gates, or other water-control structures; anadromous fish populations in Rhode Island have been severely impacted. Although commercial fisheries for these species are not currently viable, some fish runs still persist today (e.g., Gilbert Stuart -North Kingstown and Nonquit in Tiverton). USDA NRCS Farm bill programs, working together with an established and effective state, local, and federal partnership, are now uniquely positioned to positively impact these valuable fish runs. Significant opportunities now exist to increase the scale of fish passage restoration in RI. Hundreds of restoration opportunities have been evaluated and identified by the Rhode Island Department of Environmental Management (RIDEM) Division of Fish and Wildlife's Strategic Plan for the Restoration of Anadromous Fishes to RI Coastal Streams. Based upon a number of State Watershed Restoration Planning Meetings conducted in 2004, the highest priority river basin projects have been selected as part of this NRCS Special Project request. NRCS is requesting $4,313,750 in financial assistance to restore over 3559 acres of anadromous fish habitat to RI coastal and inland communities.
    [Show full text]
  • Save the Bay Narragansett
    Save The Bay Center P: 401-272-3540 100 Save The Bay Drive F: 401-273-7153 Providence, RI 02905 SAVEBAY.ORG March 10, 2011 Ms. Thelma Murphy U.S. EPA – Region 1 [email protected] RE: Proposed NPDES General Permit for Small lMS4s in the MA Interstate, Merrimack and South Coastal Watersheds Comments of John Torgan, Narragansett Baykeeper, Save The Bay, RI In Support of USEPA’s Draft Massachusetts Interstate, Merrimack and South Coastal Small Municipal Stormwater (MS4) General Permit Dear Ms. Murphy, Thank you for this opportunity to comment in support of USEPA’s Draft Massachusetts Interstate, Merrimack and South Coastal Small Municipal Stormwater (MS4) General Permit. My name is John Torgan and I am writing on behalf of Save The Bay, Southeastern New England’s largest non-profit environmental organization dedicated to protecting Narragansett Bay, its watershed, and adjacent coastal waters. While the vast majority of Narragansett Bay is in Rhode Island, more than 60% of its watershed is located in Massachusetts and specifically in the Interstate and South Coastal watersheds which are subject to this draft permit. The Blackstone and Taunton Rivers together comprise the majority of freshwater flow into the Narragansett Bay estuary, and we have long recognized the importance of these rivers to the ecology, economy, and quality of life to upstream and downstream communities alike. If stormwater pollution accounts for more than 60% of the pollution problem in Massachusetts waters, Rhode Island is no better off, and we know that stormwater represents one of the greatest threats to the ecological health and public usage of waters in Southern New England.
    [Show full text]
  • Describe Significant Developments in the New England Colonies, Including
    Lesson 5: The Development of the New England Colonies 1 2 Content Expectations 5 –U2.3.1: Describe significant developments in the New England colonies, including: • Patterns of settlement and control including the impact of geography (landforms and climate) on settlement • Relations with American Indians (eg., Pequot/King Phillip’s War) • Growth of agricultural (small farms) and non-agricultural (shipping, manufacturing) economies • The development of government including establishment of town meetings, development of colonial legislatures and growth of royal government • Religious tensions in Massachusetts that led to the establishment of other colonies in New England. 3 Reasons for Founding Influence Economic of Activities Geography Development of the New England Colonies Push Pull Factors Factors 4 5 English Settlers in New England Making Inferences 6 TCI Text Series 7 8 The Puritans After the Pilgrims founded Plymouth, another religious group founded another English colony nearby. Similarity: also disagreed with the Church of England. Difference: did not want to separate from the Church, wanted to change some of the Church’s practices or make it more “pure.” 9 The Founding of the Massachusetts Bay Colony 1629 • a group of Puritans joined other people in England to form the New England Company. • the King granted the company a charter. • The first group of Puritans sailed to New England that year. • They began a settlement named “Salem” on Massachusetts Bay. 10 Salem 11 The Founding of the Massachusetts Bay Colony 1630 • John Winthrop brought a second and much larger group of Puritans from England . • The group included nearly one thousand colonists traveling on eleven ships.
    [Show full text]
  • 33 CFR Ch. I (7–1–14 Edition) § 167.100
    § 167.100 33 CFR Ch. I (7–1–14 Edition) (b) A traffic lane for northbound traf- § 167.102 In the approaches to Narra- fic is established between the separa- gansett Bay, RI, and Buzzards Bay, tion zone and a line connecting the fol- MA: Narragansett Bay approach. lowing geographical positions: (a) A separation zone 2 miles wide is established and is centered upon the Latitude Longitude following geographical positions: 40°50.47′ N ........................................ 68°58.67′ W. 42°20.17′ N ........................................ 69°59.40′ W. Latitude Longitude 42°22.71′ N ........................................ 70°38.62′ W. 41°22.70′ N ........................................ 71°23.30′ W. 41°11.10′ N ........................................ 71°23.30′ W. (c) A traffic lane for southbound traf- fic is established between the separa- (b) A traffic lane 1 mile wide is estab- tion zone and a line connecting the fol- lished on each side of the separation lowing geographical positions: zone. Latitude Longitude [USCG–2010–0718, 75 FR 77534, Dec. 13, 2010] 42°18.82′ N ........................................ 70°40.49′ W. 42°16.39′ N ........................................ 70°02.88′ W. § 167.103 In the approaches to Narra- 40°48.03′ N ........................................ 69°02.95′ W. gansett Bay, RI, and Buzzards Bay, MA: Buzzards Bay approach. [USCG–2010–0718, 75 FR 77534, Dec. 13, 2010] (a) A separation zone 1 mile wide is established and is centered upon the § 167.100 In the approaches to Narra- following geographical positions: gansett Bay, RI, and Buzzards Bay, MA: General. Latitude Longitude The traffic separation scheme in the 41°10.20′ N ........................................ 71°19.10′ W.
    [Show full text]
  • Coastal Wetland Trends in the Narragansett Bay Estuary During the 20Th Century
    Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century November 2004 A National Wetlands Inventory Cooperative Interagency Report Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century Ralph W. Tiner1, Irene J. Huber2, Todd Nuerminger2, and Aimée L. Mandeville3 1U.S. Fish & Wildlife Service National Wetlands Inventory Program Northeast Region 300 Westgate Center Drive Hadley, MA 01035 2Natural Resources Assessment Group Department of Plant and Soil Sciences University of Massachusetts Stockbridge Hall Amherst, MA 01003 3Department of Natural Resources Science Environmental Data Center University of Rhode Island 1 Greenhouse Road, Room 105 Kingston, RI 02881 November 2004 National Wetlands Inventory Cooperative Interagency Report between U.S. Fish & Wildlife Service, University of Massachusetts-Amherst, University of Rhode Island, and Rhode Island Department of Environmental Management This report should be cited as: Tiner, R.W., I.J. Huber, T. Nuerminger, and A.L. Mandeville. 2004. Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA. In cooperation with the University of Massachusetts-Amherst and the University of Rhode Island. National Wetlands Inventory Cooperative Interagency Report. 37 pp. plus appendices. Table of Contents Page Introduction 1 Study Area 1 Methods 5 Data Compilation 5 Geospatial Database Construction and GIS Analysis 8 Results 9 Baywide 1996 Status 9 Coastal Wetlands and Waters 9 500-foot Buffer Zone 9 Baywide Trends 1951/2 to 1996 15 Coastal Wetland Trends 15 500-foot Buffer Zone Around Coastal Wetlands 15 Trends for Pilot Study Areas 25 Conclusions 35 Acknowledgments 36 References 37 Appendices A.
    [Show full text]
  • A Brief History of Oyster Aquaculture in Rhode Island Michael A
    pp. 24-38. In: Rhode Island Coastal Resources Management Council (2006), Aquaculture in Rhode Island: Annual Report 2006, State of Rhode Island. 47pp A Brief History of Oyster Aquaculture in Rhode Island Michael A. Rice University of Rhode Island Shellfishing and consumption of shellfish from Narragansett Bay and Rhode Island’s coastal salt ponds has been known to be an important part of Rhode Island’s history from pre-colonial times. Roger Williams in a chapter on fish and fishing in his 1643 treatise on the language of the Narragansett Indians, noted that during the summer months they would wade and dive deep for shellfish.1 During the early colonial period, extensive oyster reefs were harvested for the consumption of the meats, but the oyster shells had higher value as a raw material for the manufacture of lime for use in masonry mortar. Limestone, a traditional raw material for lime kilns, is not readily available in southern New England, and surely contributed to the value of oyster shell as a source of calcium carbonate. By the early 1700s, the harvest of oysters exclusively for use as a raw material for lime production was a wasteful use of the marine resource so the Colonial Assembly outlawed the practice by statute in 1734 noting the unacceptable waste of oyster meats as unshucked oysters were fed into the kilns.2 This may well be the first instance of legislative action to promote conservation of Rhode Island’s marine resources. During the later colonial period, oysters were not considered a luxury food as they are today, but growing populations in Rhode Island’s coastal towns provided a ready market.
    [Show full text]