Southeast New England Program Year in Review: 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tidal Flushing and Eddy Shedding in Mount Hope Bay and Narragansett Bay: an Application of FVCOM
Tidal Flushing and Eddy Shedding in Mount Hope Bay and Narragansett Bay: An Application of FVCOM Liuzhi Zhao, Changsheng Chen and Geoff Cowles The School for Marine Science and Technology University of Massachusetts at Dartmouth 706 South Rodney French Blvd., New Bedford, MA 02744. Corresponding author: Liuzhi Zhao, E-mail: [email protected] 1 Abstract The tidal motion in Mt. Hope Bay (MHB) and Narragansett Bay (NB) is simulated using the unstructured grid, finite-volume coastal ocean model (FVCOM). With an accurate geometric representation of irregular coastlines and islands and sufficiently high horizontal resolution in narrow channels, FVCOM provides an accurate simulation of the tidal wave in the bays and also resolves the strong tidal flushing processes in the narrow channels of MHB-NB. Eddy shedding is predicted on the lee side of these channels due to current separation during both flood and ebb tides. There is a significant interaction in the tidal flushing process between MHB-NB channel and MHB-Sakonnet River (SR) channel. As a result, the phase of water transport in the MHB-SR channel leads the MHB-NB channel by 90o. The residual flow field in the MHB and NB features multiple eddies formed around headlands, convex and concave coastline regions, islands, channel exits and river mouths. The formation of these eddies are mainly due to the current separation either at the tip of the coastlines or asymmetric tidal flushing in narrow channels or passages. Process-oriented modeling experiments show that horizontal resolution plays a critical role in resolving the asymmetric tidal flushing process through narrow passages. -
New Partnership for Restoration in Southeast Coastal New England Margherita Pryor from Westerly, Rhode Island to Chatham, Massachusetts, Wildlife Service, U.S
New Partnership for Restoration in Southeast Coastal New England Margherita Pryor From Westerly, Rhode Island to Chatham, Massachusetts, Wildlife Service, U.S. Geological Survey, Natural Resources the coastal watersheds of southeastern New England occupy Conservation Service, and the Small Business Administra- a distinct ecological and management niche between Long tion. The Agency should also include stakeholders from local Island Sound and the Gulf of Maine. With its layers of 400 governments and agencies, non-governmental organizations, years of development—from farming and fishing to indus- and academic institutions. The conferees also recommend trialization to suburban office parks—this area presents that the Agency, through this regional effort, facilitate the environmental challenges that are unique, but also represen- development of strategies to restore and protect the southern tative of the country at large. In addition to its splendid sense New England Estuaries. of place and nature, history has also left it with the cumula- In response, EPA Region 1 has been working with inter- tive impacts of centuries of ecological insults. Toxic residues, ested partners in both Rhode Island and Massachusetts, channeled and impounded rivers, and highly altered natural including federal, state, and local agencies, the Narragansett systems are legacies now compounded by excess nutrients Bay and Buzzards Bay NEPs, and non-governmental organi- and increasing vulnerability to climate change. zations such as the Cape Cod Commission, to think through In facing these daunting challenges, Southeastern New an effective partnership framework. Consistent with Congres- England is fortunate to be home to multiple federal, state, and sional direction, the goal of this partnership places particular local agencies—along with dozens of universities, research emphasis on addressing key habitat and water quality priori- institutions, watershed groups, land trusts, and other non- ties, especially the nexus between them in key activities so governmental organizations. -
Bedrock Valleys of the New England Coast As Related to Fluctuations of Sea Level
Bedrock Valleys of the New England Coast as Related to Fluctuations of Sea Level By JOSEPH E. UPSON and CHARLES W. SPENCER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 454-M Depths to bedrock in coastal valleys of New England, and nature of sedimentary Jill resulting from sea-level fluctuations in Pleistocene and Recent time UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication, as follows: Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level, by Joseph E. Upson and Charles W. Spencer. Washington, U.S. Govt. Print. Off., 1964. iv, 42 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 454-M) Shorter contributions to general geology. Bibliography: p. 39-41. (Continued on next card) Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level. 1964. (Card 2) l.Geology, Stratigraphic Pleistocene. 2.Geology, Stratigraphic Recent. S.Geology New England. I.Spencer, Charles Winthrop, 1930-joint author. ILTitle. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Configuration and depth of bedrock valleys, etc. Con. Page Abstract.__________________________________________ Ml Buried valleys of the Boston area. _ _______________ -
2018-2020 Category 5 Waters 303(D) List of Impaired Waters
2018-2020 Category 5 Waters 303(d) List of Impaired Waters Blackstone River Basin Wilson Reservoir RI0001002L-01 109.31 Acres CLASS B Wilson Reservoir. Burrillville TMDL TMDL Use Description Use Attainment Status Cause/Impairment Schedule Approval Comment Fish and Wildlife habitat Not Supporting NON-NATIVE AQUATIC PLANTS None No TMDL required. Impairment is not a pollutant. Fish Consumption Not Supporting MERCURY IN FISH TISSUE 2025 None Primary Contact Recreation Not Assessed Secondary Contact Recreation Not Assessed Echo Lake (Pascoag RI0001002L-03 349.07 Acres CLASS B Reservoir) Echo Lake (Pascoag Reservoir). Burrillville, Glocester TMDL TMDL Use Description Use Attainment Status Cause/Impairment Schedule Approval Comment Fish and Wildlife habitat Not Supporting NON-NATIVE AQUATIC PLANTS None No TMDL required. Impairment is not a pollutant. Fish Consumption Not Supporting MERCURY IN FISH TISSUE 2025 None Primary Contact Recreation Fully Supporting Secondary Contact Recreation Fully Supporting Draft September 2020 Page 1 of 79 Category 5 Waters Blackstone River Basin Smith & Sayles Reservoir RI0001002L-07 172.74 Acres CLASS B Smith & Sayles Reservoir. Glocester TMDL TMDL Use Description Use Attainment Status Cause/Impairment Schedule Approval Comment Fish and Wildlife habitat Not Supporting NON-NATIVE AQUATIC PLANTS None No TMDL required. Impairment is not a pollutant. Fish Consumption Not Supporting MERCURY IN FISH TISSUE 2025 None Primary Contact Recreation Fully Supporting Secondary Contact Recreation Fully Supporting Slatersville Reservoir RI0001002L-09 218.87 Acres CLASS B Slatersville Reservoir. Burrillville, North Smithfield TMDL TMDL Use Description Use Attainment Status Cause/Impairment Schedule Approval Comment Fish and Wildlife habitat Not Supporting COPPER 2026 None Not Supporting LEAD 2026 None Not Supporting NON-NATIVE AQUATIC PLANTS None No TMDL required. -
RI DEM/Water Resources
STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS DEPARTMENT OF ENVIRONMENTAL MANAGEMENT Water Resources WATER QUALITY REGULATIONS July 2006 AUTHORITY: These regulations are adopted in accordance with Chapter 42-35 pursuant to Chapters 46-12 and 42-17.1 of the Rhode Island General Laws of 1956, as amended STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS DEPARTMENT OF ENVIRONMENTAL MANAGEMENT Water Resources WATER QUALITY REGULATIONS TABLE OF CONTENTS RULE 1. PURPOSE............................................................................................................ 1 RULE 2. LEGAL AUTHORITY ........................................................................................ 1 RULE 3. SUPERSEDED RULES ...................................................................................... 1 RULE 4. LIBERAL APPLICATION ................................................................................. 1 RULE 5. SEVERABILITY................................................................................................. 1 RULE 6. APPLICATION OF THESE REGULATIONS .................................................. 2 RULE 7. DEFINITIONS....................................................................................................... 2 RULE 8. SURFACE WATER QUALITY STANDARDS............................................... 10 RULE 9. EFFECT OF ACTIVITIES ON WATER QUALITY STANDARDS .............. 23 RULE 10. PROCEDURE FOR DETERMINING ADDITIONAL REQUIREMENTS FOR EFFLUENT LIMITATIONS, TREATMENT AND PRETREATMENT........... 24 RULE 11. PROHIBITED -
How Narragansett Bay Shaped Rhode Island
How Narragansett Bay Shaped Rhode Island For the Summer 2008 issue of Rhode Island History, former director of the Naval War College Museum, Anthony S. Nicolosi, contributed the article, “Rear Admiral Stephen B. Luce, U.S.N, and the Coming of the Navy to Narragansett Bay.” While the article may prove too specialized to directly translate into your classroom, the themes and topics raised within the piece can fit easily into your lesson plans. We have created a handful of activities for your classes based on the role that Narragansett Bay has played in creating the Rhode Island in which we now live. The first activity is an easy map exercise. We have suggested a link to a user-friendly map, but if you have one that you prefer, please go ahead and use it! The goal of this activity is to get your students thinking about the geography of the state so that they can achieve a heightened visual sense of the bay—to help them understand its fundamental role in our development. The next exercise, which is more advanced, asks the students to do research into the various conflicts into which this country has entered. It then asks them, in groups, to deduce what types of ships, weapons, battles and people played a part in each of these wars, and of course, how they relate to Narragansett Bay. We hope that your students will approach the end result creatively by styling their charts after maritime signal “flags.” Exploring the Ocean State Rhode Island is the smallest state, measuring forty-eight miles from North to South and thirty-seven miles from east to west. -
A History of Oyster Aquaculture in Rhode Island
28 A History of Oyster Aquaculture in Rhode Island By Michael A. Rice Top: The Great Hurricane of 1938 severely damaged wharves, warehouses, and other shoreside facilities throughout the state. Photo by the Providence Journal. Middle: Photo courtesy Perry Raso, Matunuck Oyster Farm. Bottom: Rhode Island Agricultural Experiment Station Marine Laboratory at Jerusalem on Point Judith Pond. Photo taken in 1897 shows a steam tractor and nets for sampling the pond bottom. Photo cour- tesy of URI Special Collections. RHODE ISLAND AQUACULTURE INITIATIVE 29 The Rhode Island aquaculture industry is no longer moribund as evidenced by this steady and healthy rate of growth. Shellfishing and consumption of shellfish grounds or to regulate the fisheries. However, the common property principle and the states’ rights to manage their re- from Narragansett Bay and Rhode Island’s sources were reinforced by the 1842 U.S. Supreme Court. coastal salt ponds has been an important part In light of the controversy surrounding the early aquacul- ture leases and the U.S. Supreme Court decision, the General of Rhode Island’s history. During the early Assembly passed the Oyster Act of 1844, which was Rhode Island’s first aquaculture law. The act established a system of Colonial period, extensive oyster reefs were leasing tracts of submerged land for the purpose of culturing harvested for the consumption of the meats, oysters, as well as setting up a board of three shellfishery com- missioners—who served without salary—and a fee structure but the oyster shells had higher value as a raw for the leases. The fee structure ranged from a high of $10 material for the manufacture of lime for use per acre per year to a low of $1 per acre per year for larger, multiple-acre leases. -
RI 2008 Integrated Report
STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS 2008 INTEGRATED WATER QUALITY MONITORING AND ASSESSMENT REPORT SECTION 305(b) STATE OF THE STATE’S WATERS REPORT And SECTION 303(d) LIST OF IMPAIRED WATERS FINAL APRIL 1, 2008 RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES www.dem.ri.gov STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS 2008 INTEGRATED WATER QUALITY MONITORING AND ASSESSMENT REPORT Section 305(b) State of the State’s Waters Report And Section 303(d) List of Impaired Waters FINAL April 1, 2008 DEPARTMENT OF ENVIRONMENTAL MANAGEMENT OFFICE OF WATER RESOURCES 235 Promenade Street Providence, RI 02908 (401) 222-4700 www.dem.ri.gov Table of Contents List of Tables .............................................................................................................................................iii List of Figures............................................................................................................................................iii Executive Summary.................................................................................................................................... 1 Chapter 1 Integrated Report Overview.................................................................................................... 7 A. Introduction ................................................................................................................................... 7 B. Background .................................................................................................................................. -
Commonwealth of Massachusetts Division of Marine Fisheries 1213 Purchase St
Commonwealth of Massachusetts Division of Marine Fisheries 1213 Purchase St. 3rd Floor New Bedford, MA 02740 (508)990-2860 Paul J. Diodati Director fax (508)990-0449 Deval Patrick Governor Timothy P. Murray Lt. Governor Richard K. Sullivan, Jr. Secretary MarineFisheries River Herring Stocking Protocols Mary B. Griffin Commissioner Date: March 2013 Purpose: The Massachusetts Division of Marine Fisheries (MarineFisheries) has transferred river herring between river systems in stocking trucks to supplement restoration efforts since the 1940s. In 2012, MarineFisheries reviewed their river herring stocking methodologies to develop guidelines to aid our decisions on stocking. From this review, the following protocols were adopted to provide guidance to Marine Fisheries when evaluating town requests and new restoration initiatives that seek to transfer river herring from one river system to another. Restoration Objectives: It is important to highlight that our primary objective in restoring river herring populations is to create natural habitat conditions that support sustainable runs in coastal rivers. The restoration of native herring runs includes the improvement of spawning, nursery, and migratory habitat. Stocking herring can assist this process, but will not be a primary response or done in isolation from habitat improvement, and decisions will be carefully weighed to avoid unintended consequences. Population status: Due to low population levels, river herring are currently under a moratorium in Massachusetts in which harvest, possession, and sale are prohibited. Population declines are evident in several river systems that have been traditionally used for donor stock. Therefore, careful consideration, based on professional experience and protocols, will be used when selecting donor stocks and introducing herring to new habitats. -
Nrcs Rhode Island (Ri) Anadromous Fish Habitat
;> Leaser NATURAL RESOURCES CONSERVATION SERVICE Rhode Island Anadromous Fish Habitat Restoration Special Project Proposal Fiscal Year 2005 SDMS DocID 273447 Pawtuxet River Falls Dam, Warwick & Cranston RJ Natural Resources Conservation \IRCS Service Statement of Need: Rhode Island once supported lucrative fisheries for anadromous Atlantic salmon (Salmo solar), American shad (Alosa sapidissima), and river herring - alewife (Alosa pseudoharengus)and blueback herring (Alosa aestavalis). These "anadromous" species spawn in fresh water, and mature and spend most of their adult lives in salt water. Because most of Rhode Island's rivers are blocked or obstructed by dams, weirs, tide gates, or other water-control structures; anadromous fish populations in Rhode Island have been severely impacted. Although commercial fisheries for these species are not currently viable, some fish runs still persist today (e.g., Gilbert Stuart -North Kingstown and Nonquit in Tiverton). USDA NRCS Farm bill programs, working together with an established and effective state, local, and federal partnership, are now uniquely positioned to positively impact these valuable fish runs. Significant opportunities now exist to increase the scale of fish passage restoration in RI. Hundreds of restoration opportunities have been evaluated and identified by the Rhode Island Department of Environmental Management (RIDEM) Division of Fish and Wildlife's Strategic Plan for the Restoration of Anadromous Fishes to RI Coastal Streams. Based upon a number of State Watershed Restoration Planning Meetings conducted in 2004, the highest priority river basin projects have been selected as part of this NRCS Special Project request. NRCS is requesting $4,313,750 in financial assistance to restore over 3559 acres of anadromous fish habitat to RI coastal and inland communities. -
The State of Stormwater in Rhode Island Water Quality, Stormwater Permits & Sea Level Rise Welcome
EBC Rhode Island Program The State of Stormwater in Rhode Island Water Quality, Stormwater Permits & Sea Level Rise Welcome Jackson Bailey Communications & Marketing Coordinator Environmental Business Council Environmental Business Council of New England Energy Environment Economy Welcome to RI DEM Terry Gray Assistant Director Air, Waste & Compliance RI DEM Environmental Business Council of New England Energy Environment Economy Introduction & Program Overview Cynthia Baumann Program Chair & Moderator Principal, CDM Smith Inc. Environmental Business Council of New England Energy Environment Economy State of Stormwater in New England Thelma Murphy Chief Stormwater & Constructions Permits Section U.S. Environmental Protection Agency Environmental Business Council of New England Energy Environment Economy Water Quality in Rhode Island Elizabeth Scott Deputy Chief, Surface Water Protection Office of Water Resources RI DEM Environmental Business Council of New England Energy Environment Economy Water Quality in Rhode Island Presentation to EBC Rhode Island Program by Elizabeth Scott, Deputy Chief RIDEM/Office of Water Resources May 2, 2018 OVERVIEW OF PRESENTATION • Background – Water Quality Management Framework • Overview of Integrated Reporting Assessment Process • 2016 Integrated Reporting Results 303(d) List • Water Quality Restoration Activities • Investments leading to improved water quality • Ongoing and planned water quality restoration studies WATER QUALITY MANAGEMENT FRAMEWORK Water Quality Standards Compliance & Monitoring Enforcement -
Save the Bay Narragansett
Save The Bay Center P: 401-272-3540 100 Save The Bay Drive F: 401-273-7153 Providence, RI 02905 SAVEBAY.ORG March 10, 2011 Ms. Thelma Murphy U.S. EPA – Region 1 [email protected] RE: Proposed NPDES General Permit for Small lMS4s in the MA Interstate, Merrimack and South Coastal Watersheds Comments of John Torgan, Narragansett Baykeeper, Save The Bay, RI In Support of USEPA’s Draft Massachusetts Interstate, Merrimack and South Coastal Small Municipal Stormwater (MS4) General Permit Dear Ms. Murphy, Thank you for this opportunity to comment in support of USEPA’s Draft Massachusetts Interstate, Merrimack and South Coastal Small Municipal Stormwater (MS4) General Permit. My name is John Torgan and I am writing on behalf of Save The Bay, Southeastern New England’s largest non-profit environmental organization dedicated to protecting Narragansett Bay, its watershed, and adjacent coastal waters. While the vast majority of Narragansett Bay is in Rhode Island, more than 60% of its watershed is located in Massachusetts and specifically in the Interstate and South Coastal watersheds which are subject to this draft permit. The Blackstone and Taunton Rivers together comprise the majority of freshwater flow into the Narragansett Bay estuary, and we have long recognized the importance of these rivers to the ecology, economy, and quality of life to upstream and downstream communities alike. If stormwater pollution accounts for more than 60% of the pollution problem in Massachusetts waters, Rhode Island is no better off, and we know that stormwater represents one of the greatest threats to the ecological health and public usage of waters in Southern New England.