Diversity Study of Wood Rotting Fungi from Two Different Forests in Mizoram, India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ergosterol Purified from Medicinal Mushroom Amauroderma Rude Inhibits Cancer Growth in Vitro and in Vivo by Up-Regulating Multiple Tumor Suppressors
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 19 Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors Xiangmin Li1,2,3,4,*, Qingping Wu2,*, Yizhen Xie2, Yinrun Ding2, William W. Du3,4, Mouna Sdiri3,4, Burton B. Yang3,4 1School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China 2State Key Laboratory of Applied Microbiology Southern China (The Ministry-Province Joint Development), Guangdong Institute of Microbiology, Guangzhou, 510070, PR China 3Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N3M5, Canada 4Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N3M5, Canada *These authors have contributed equally to this work Correspondence to: Yizhen Xie, e-mail: [email protected] Burton B. Yang, e-mail: [email protected] Keywords: herbal medicine, medicinal mushroom, Foxo3a, Bim, Fas Received: April 08, 2015 Accepted: May 13, 2015 Published: May 27, 2015 ABSTRACT We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent. -
World Bank Document
h -- Public Disclosure Authorized gn,un,r- s' t .S *K t ' t~~~~~~~~~~-- i ll E il P \~~~t 4 1- ' Public Disclosure Authorized (na'g HS) zY Wm"y''''S.'f' ;', ', ''' '',''-' '~'0', t'' .SC:''''''''E 3'; , 'r' 6 ~ U Public Disclosure Authorized it ~ ~ ~ ~ ~ Public Disclosure Authorized OA 86b3 ' :~~~~~~~~~~~ TABLE OF CONTENTS 1. INTRODUCTORY BACKGROUND ................................................... 1-1 1.1. PROJECT BACKGROUND ................................................... 1-1 1.2. PROPOSED WORKS FOR BP1 -THE AIZAWL BYPASS . ..................................1-1 1.3. IMPACTS ENVISAGED AND THE CORRIDOR OF IMPACT . ..............................1-4 1.4. SCOPE OF ENVIRONMENTAL IMPACT ASSESSMENT ................................... 1-6 1.5. THE STUDY METHODOLOGY ................................................................... 1-6 1.6. STRUCTURE OF THE REPORT ................................................................... 1-7 2.' POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK . ..............................2-1 2.1. IMPLEMENTATION AND REGUALTORY AGENCIES .......................................................... 2-1 2.2. LEGAL FRAMEWORK AND THE ENVIRONMENTAL CLEARANCE STIPULATIONS ............ 2-1 2.3. GOI/GOM CLEARANCE REQUIREMENTS ..................................................................... 2-2 2.4. WORLD BANK REQUIREMENTS ..................................................................... 2-2 3. THE EXISTING ENVIRONMENT ..................................................................... 3-1 3.1. METEOROLOGICAL CONDITIONS -
A New Pericarbonyl Lignan from Amauroderma Rude
ORIGINAL ARTICLE Rec. Nat. Prod. 13:4 (2019) 296-300 A New Pericarbonyl Lignan from Amauroderma rude Miao Dong 1, Zuhong Ma 2, Qiaofen Yang 2, Qiuyue Hu 2, Yanqing Ye 2,* and Min Zhou 1,* 1Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, P.R. China 2 School of Chemistry and Environment, Yunnan Minzu University, Kunming 650031, P.R. China (Received October 24, 2018; Revised November 29, 2018; Accepted November 30, 2018) Abstract: A new pericarbonyl lignan (1), named amaurolignan A was isolated from an ethanol extract of the fruiting bodies in Amauroderma rude of family Ganodermataceae, together with two known lignans, 4-methoxymatairesinol 4′-β-D-glucoside (2) and lappaol F (3). The structures of compounds (1-3) were elucidated using NMR and MS spectroscopic methods. Keywords: Pericarbonyl lignan; amaurolignan A; Amauroderma rude. © 2019 ACG Publications. All rights reserved. 1. Introduction “Lingzhi” is a mushroom that has been renowned in China for more than 2000 years because of its claimed medicinal properties and symbolic fortune, which translates as ‘Ganodermataceae’ in a broad sense, and in a narrow sense it represents the highly prized medicinal Ganoderma species distributed in East Asia [1]. Its medicinal properties include anti-aging, lowering blood pressure, improving immunity, and preventing and treating various cancers, chronic bronchitis, gastric ulcers, hepatitis, neurasthenia and thrombosis [2-4]. The medicinal effects of many mushrooms such as Ganoderma lucidum, Lentinula edodes, Agaricus blazei, Antrodia camphorate and Grifola frondosaI come from their metabolites including polysaccharides, triterpenes, lucidenic acids, adenosine, ergosterol, glucosamine and cerebrosides [5-8]. -
Tree Diversity and Carbon Stocks of Hmuifang Forest, Mizoram
S. B. Sharma et al. Int. J. Res. BioSciences, 7(1): 87-99 (2018) International Journal of Research in BioSciences Volume 7 Issue 1, pp. (87-99), January 2018 Available online at http://www.ijrbs.in ISSN 2319-2844 Research Paper Tree diversity and carbon stocks of hmuifang forest, Mizoram *Shijagurumayum Baleshwor Sharma, Ngangbam Somen Singh and R. Lalruatfela Department of Forestry, Mizoram University, Aizawl, Mizoram-796004, INDIA (Received October 13, 2017, Accepted December 29, 2017) Abstract The diversity of trees and carbon stock of Hmuifang forest were studied. The highest Density, Frequency and Important value Index were found in Dipterocarpus retusus with 153.33, 86.67 and 42.33 respectively, followed by Helicia excelsa with 136.67, 73.33 and 22.10 respectively. Lithocarpus xylocarpus has the highest abundance (2.40) followed by Helicia excelsa (1.86). The study of diversity indices shows that there is greater diversity, the community has a higher evenness and there are fewer disturbances in the forest. Biomass of trees was calculated by using allometric equations. Below ground Biomass was estimated by the Root- Shoot ratio relationship. The highest biomass was stored in Quercus floribunda (244.61 t/ha) followed by Dipterocarpus retusus (175.04 t/ha). Soil samples were collected from four depths layer (0-10 cm), (10-20 cm), (20-30 cm) and (30-40 cm). Soil Organic Carbon was determined by using Walkley-Black wet oxidation method. The Total Carbon Stock of Hmuifang Forest was found to be 468.26 t/ha and total CO2 sequestered is 1718.51. The results of this study help understand the status of this forest and its importance in Carbon sequestration. -
Wood-Rotting Fungi in East Khasi Hills of Meghalaya, Northeast India, with Special Reference to Heterobasidion Perplexa (A Rare Species ‒ New to India)
Current Research in Environmental & Applied Mycology 4 (1): 117–124 (2014) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2014 Online Edition Doi 10.5943/cream/4/1/10 Wood-rotting fungi in East Khasi Hills of Meghalaya, northeast India, with special reference to Heterobasidion perplexa (a rare species ‒ new to India) Lyngdoh A1,2* and Dkhar MS1 1Microbial Ecology Laboratory, Department of Botany, North Eastern Hill University, Shillong- 793022, Meghalaya, India. 2Department of Botany, Shillong College, Shillong – 793003, Meghalaya, India. Email: [email protected] Lyngdoh A, Dkhar MS 2014 ‒ Wood-rotting fungi in East Khasi Hills of Meghalaya, Northeast India, with special reference to Heterobasidion perplexa (a rare species ‒ new to India). Current Research in Environmental & Applied Mycology 4 (1): 117–124, Doi 10.5943/cream/4/1/10 Abstract Field surveys and collection of the basidiocarps of wood-rotting fungi were carried out in eight forest stands of East Khasi Hills district of Meghalaya, India. Seventy eight wood-rotting fungi belonging to 23 families were identified. The undisturbed Mawphlang sacred grove was found to harbour a much larger number of the wood-rotting fungi (33.54 %) as compared to the other forest stands studied. Similarly, logs also harboured the maximum number of wood-rotting fungi (59.7 %) while living trees harboured the least (7.8%). Microporus xanthopus had the highest frequency percentage of occurrence with 87.5 %, followed by Cyclomyces tabacinus, Microporus affinis and Trametes versicolor with 62.5 %. Majority of the wood-rotting fungi are white-rot fungi (89.61%) and only few are brown-rots. -
Short Title: Lentinus, Polyporellus, Neofavolus
In Press at Mycologia, preliminary version published on February 6, 2015 as doi:10.3852/14-084 Short title: Lentinus, Polyporellus, Neofavolus Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa Jaya Seelan Sathiya Seelan Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610, and Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia Alfredo Justo Laszlo G. Nagy Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610 Edward A. Grand Mahidol University International College (Science Division), 999 Phuttamonthon, Sai 4, Salaya, Nakorn Pathom 73170, Thailand Scott A. Redhead ECORC, Science & Technology Branch, Agriculture & Agri-Food Canada, CEF, Neatby Building, Ottawa, Ontario, K1A 0C6 Canada David Hibbett1 Biology Department, Clark University, 950 Main Street Worcester, Massachusetts 01610 Abstract: The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and Copyright 2015 by The Mycological Society of America. partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. -
Wood-Rotting Fungi in Two Forest Stands of Kohima, North East India – a Preliminary Report
Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(1): 1–7 (2017) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/7/1/1 Copyright © Beijing Academy of Agriculture and Forestry Sciences Wood-rotting fungi in two forest stands of Kohima, north east India – a preliminary report Chuzho K1, Dkhar MS1 and Lyngdoh A2* 1Microbial Ecology Laboratory, Department of Botany, North Eastern Hill University, Shillong- 793022, Meghalaya, India. 2Department of Botany, Shillong College, Boyce Road, Laitumkhrah – 793003, Shillong, Meghalaya. email: [email protected]. Chuzho K, Dkhar M. S, Lyngdoh A. 2017 – Wood-rotting fungi in two forest stands of Kohima, north east India – a preliminary report. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(1), 1–7, Doi 10.5943/cream/7/1/1 Abstract Wood-rotting fungi were collected from two forest stands - a disturbed (Lower Kitsubozou) and an undisturbed forest stand (Mount Puliebadze) of Kohima, Nagaland in India. A survey and collection of wood-rotting fungi were done during the months of October and November, 2013 (Autumn); January and February, 2014 (Winter); March and April, 2014 (Spring). A total of 32 species belonging to 18 families were identified based on the macro and micro morphology of the fruiting bodies. Three species belong to phylum Ascomycota and 29 species belong to phylum Basidiomycota. More wood-rotting fungi were collected from the undisturbed forest stand, Puliebadze than from the disturbed forest stand, Lower Kitsubozou. Of the total species of wood- rotting fungi collected, 68.96% species occurred on logs, 17.24% on tree stumps, 15.51% on twigs and 12.06% on living trees. -
Antitumor and Immunomodulatory Activities of Medicinal Mushroom Polysaccharides and Polysaccharide-Protein Complexes in Animals and Humans (Review)
MYCOLOGIA BALCANICA 2: 221–250 (2005) 221 Antitumor and immunomodulatory activities of medicinal mushroom polysaccharides and polysaccharide-protein complexes in animals and humans (Review) Solomon P. Wasser *, Maryna Ya. Didukh & Eviatar Nevo Institute of Evolution, University of Haifa, Mt Carmel, 31905 Haifa, Israel M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkovskaya St., 01001 Kiev, Ukraine Received 24 September 2004 / Accepted 9 June 2005 Abstract. Th e number of mushrooms on Earth is estimated at 140 000, yet perhaps only 10 % (approximately 14 000 named species) are known. Th ey make up a vast and yet largely untapped source of powerful new pharmaceutical products. Particularly, and most important for modern medicine, they present an unlimited source for polysaccharides with anticancer and immunostimulating properties. Many, if not all Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelia, and culture broth. Th e data about mushroom polysaccharides are summarized for 651 species and seven intraspecifi c taxa from 182 genera of higher Hetero- and Homobasidiomycetes. Th ese polysaccharides are of diff erent chemical composition; the main ones comprise the group of β-glucans. β-(1→3) linkages in the main chain of the glucan and further β-(1→ 6) branch points are needed for their antitumor action. Numerous bioactive polysaccharides or polysaccharide- protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses, and exhibit antitumour activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has signifi cant eff ects on the maturation, diff erentiation, and proliferation of many kinds of immune cells in the host. -
Spatial Ecology of the Fungal Genus Xylaria in a Tropical Cloud Forest Daniel Thomas1*, Roo Vandegrift*, Ashley Ludden, George C
Spatial Ecology of the Fungal Genus Xylaria in a Tropical Cloud Forest Daniel Thomas1*, Roo Vandegrift*, Ashley Ludden, George C. Carroll, and Bitty A. Roy Institute of Ecology and Evolution, University of Oregon, University of Oregon, USA 1Corresponding author; email: [email protected] *D. Thomas and R. Vandegrift contributed equally to this work. Received _________; revision accepted ________. Thomas, Vandegrift, Ludden, Carroll, and Roy Spatial Ecology of Cloud Forest Xylaria Abstract: Fungal symbioses with plants are ubiquitous, ancient, and vital to both ecosystem function and plant health. However, benefits to fungal symbionts are not well explored, especially in non- mycorrhizal fungi. Here we examine spatial relationships of Xylaria endophytic fungi in the forest canopy with Xylaria decomposer fungi on the forest floor, to test the hypothesis that some fungi possess alternate life-history strategies, alternating between decomposer and endophytic life stages to aid dispersal and endure resource shortages, known as the Foraging Ascomycete hypothesis. We sampled for fungi of the genus Xylaria using a spatially explicit sampling scheme in a remote Ecuadorian cloud forest, and concurrently carried out an extensive culture- based sampling of fungal foliar endophytes. We found 36 species of Xylaria in our 0.5 ha plot, 31 of which were found to only occur as fruiting bodies. All five species of Xylaria found as endophytes were also found as fruiting bodies. We also tested the relationships of both stages of these fungi to environmental variables. Decomposer fungi were differentiated by species-specific habitat preferences, with three species being found closer to water than expected by chance, but endophytes displayed no sensitivity to environmental conditions, such as host, moisture, or canopy cover. -
Xylaria Spinulosa Sp. Nov. and X. Atrosphaerica from Southern China
Mycosphere 8 (8): 1070–1079 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/8 Copyright © Guizhou Academy of Agricultural Sciences Xylaria spinulosa sp. nov. and X. atrosphaerica from southern China Li QR1, 2, Liu LL2, Zhang X2, Shen XC2 and Kang JC1* 1The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University Guiyang 550025, People’s Republic of China 2The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi University Town, Guian new district 550025, Guizhou, People’s Republic of China Li QR, Liu LL, Zhang X, Shen XC, Kang JC 2017 – Xylaria spinulosa sp. nov. and X. atrosphaerica from southern China. Mycosphere 8(8), 1070–1079, Doi 10.5943/mycosphere/8/8/8 Abstract Two species of Xylaria collected from southern China are reported. Xylaria spinulosa sp. nov. is introduced as a new species based on morphology and sequence data analysis. Xylaria spinulosa differs from other species in the genus mainly by its long spines covering the surface of the stroma. Xylaria atrosphaerica is a new record for China. Descriptions and illustrations for both species are provided in this paper. Key words – morphology – new species – phylogeny – taxonomy – Xylariales Introduction Xylaria belongs in the subclass Xylariomycetidae in the order Xylariales, a group which is presently undergoing considerable revision (Daranagama et al. 2015, 2016). It is not presently clear how many families will be accepted in the genus, but Xylaria Hill ex Schrank is the largest genus in the family with species having been recorded in most countries worldwide (Læssøe 1987, 1999, Ju & Hsieh 2007, Ju et al. -
Secondary Metabolites from the Genus Xylaria and Their Bioactivities
CHEMISTRY & BIODIVERSITY – Vol. 11 (2014) 673 REVIEW Secondary Metabolites from the Genus Xylaria and Their Bioactivities by Fei Song, Shao-Hua Wu*, Ying-Zhe Zhai, Qi-Cun Xuan, and Tang Wang Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, P. R. China (phone: þ86-871-65032423; e-mail: [email protected]) Contents 1. Introduction 2. Secondary Metabolites 2.1. Sesquiterpenoids 2.1.1. Eremophilanes 2.1.2. Eudesmanolides 2.1.3. Presilphiperfolanes 2.1.4. Guaianes 2.1.5. Brasilanes 2.1.6. Thujopsanes 2.1.7. Bisabolanes 2.1.8. Other Sesquiterpenes 2.2. Diterpenoids and Diterpene Glycosides 2.3. Triterpene Glycosides 2.4. Steroids 2.5. N-Containing Compounds 2.5.1. Cytochalasins 2.5.2. Cyclopeptides 2.5.3. Miscellaneous Compounds 2.6. Aromatic Compounds 2.6.1. Xanthones 2.6.2. Benzofuran Derivatives 2.6.3. Benzoquinones 2.6.4. Coumarins and Isocoumarins 2.6.5. Chroman Derivatives 2.6.6. Naphthalene Derivatives 2.6.7. Anthracenone Derivatives 2.6.8. Miscellaneous Phenolic Derivatives 2.7. Pyranone Derivatives 2.8. Polyketides 3. Biological Activities 3.1. Antimicrobial Activity 3.2. Antimalarial Activity 2014 Verlag Helvetica Chimica Acta AG, Zrich 674 CHEMISTRY & BIODIVERSITY – Vol. 11 (2014) 3.3. Cytotoxic Activity 3.4. Other Activities 4. Conclusions 1. Introduction. – Xylaria Hill ex Schrank is the largest genus of the family Xylariaceae Tul.&C.Tul. (Xylariales, Sordariomycetes) and presently includes ca. 300 accepted species of stromatic pyrenomycetes [1]. Xylaria species are widespread from the temperate to the tropical zones of the earth [2]. -
Fungimap Newsletter Issue 20 August 2003
August 2003 AUSTRALIA’S FUNGI MAPPING SCHEME Ian McCann’s latest book, Australian Fungi Inside this Edition: Illustrated, was launched at the Conference, and was met with great enthusiasm by all who Contacting Fungimap ......................................2 obtained a copy. It is filled with colour photos Interesting Groups and Websites ....................2 of over 400 species of fungi, and while it is Ian McCann – An Appreciation......................3 not a field guide, it will be of great value to Australian Fungi Illustrated by Ian McCann .3 anyone interested in fungi. Australian Fungi Illustrated – Fungimap Targets......................................3 On a sad note, it is with regret that we The 2nd National Fungimap Conference .........4 acknowledge the recent death of Ian McCann, Treading Softly................................................5 naturalist and author. The world is the poorer Flavours of Fungimap – colour supplement ...6 for his passing. His friend Dave Munro has The 11th International Fungi written a tribute (see page 3). & Fibre Symposium ................................10 Other members of the Fungimap family have Regional Coordinator News..........................12 been touched by sadness in the past few WA FSG: Nanga Foray Report.....................14 months. Our deepest sympathy goes to Roz Fungi of the South-West Forests Hart and her family, as they come to terms by Richard Robinson...............................14 with the loss of her husband. Our thoughts are Forthcoming Events ......................................15